Math, asked by anusha2724, 1 year ago

Find the area if an isosceles triangle whose equal sides are 12 cm each and the perimeter is 30cm

Answers

Answered by wahilbinu
0

⇄√≡ \beta \left \{ {{y=2} \atop {x=2}} \right. \int\limits^a_b {x} \, dx \geq

Answered by BlessedMess
9

First,let the third side be x.

It is given that the length of the equal sides us 12 cm and it's perimeter is 30 cm.

So,30=12+12+x

⇒ 30 = 24 + x

⇒24  + x = 30

⇒  x= 30 - 24

⇒ x = 6

So,the length of the third side is 6 cm.

Thus,the semi perimeter of the isosceles triangle (s) = 30/2 cm =15 cm

By using Heron's Formula,

Area of the triangle,

 =  \sqrt{s(s - a)(s - b)(s - c)}

 =  \sqrt{15(15 - 12)(15 - 12)(15 - 6)}  \:  {cm}^{2}

 =  \sqrt{15 \times 3 \times 3 \times 9}  \:  {cm}^{2}

 = 9 \sqrt{15}  \:  {cm}^{2}

Similar questions