Math, asked by anikagupta11142knp, 5 months ago

Find the area of a circle with a circumference of 50.24 units.​

Answers

Answered by Anonymous
8

Given:-

  • Circumference of the circle is 50.24 units.

To find:-

  • Area of Circle.

Solution:-

Firstly,

  • find out the radius of the circle.

Formula used:-

{\dag}\:{\underline{\boxed{\sf{\purple{Circumference\: of\: Circle = 2\pi r}}}}}

\tt\longmapsto{50.24 = 2 \times \dfrac{22}{7} \times r}

\tt\longmapsto{50.24 = \dfrac{44}{7} \times r}

\tt\longmapsto{r = 50.24 \times \dfrac{44}{7}}

\tt\longmapsto{r = 7.9\: unit}

Hence,

  • the radius of the circle is 7.9 unit.

Then,

  • find out the area of the Circle.

Formula used:-

{\dag}\:{\underline{\boxed{\sf{\purple{Area\: of\: Circle = \pi r^2}}}}}

\tt\longmapsto{\dfrac{22}{7} \times (7.9)^2}

\sf\longmapsto{\boxed{\red{196.14\: unit^2}}}

Hence,

  • the area of the circle is 196.14 unit ².

More to know :-

\sf{Area\;of\;Rectangle\;=\;Length\;\times\;Breadth}

\sf{Area\;of\;Square\;=\;(Side)^{2}}

\sf{Area\;of\;Triangle\;=\;\dfrac{1}{2}\;\times\;Base\;\times\;Height}

\sf{Area\;of\;Parallelogram\;=\;Base\;\times\;Height}

\sf{Area\;of\;Circle\;=\;\pi r^{2}}

\sf{Perimeter\;of\;Rectangle\;=\;2\;\times\;(Length\;+\;Breadth)}

\sf{Perimeter\;of\;Rectangle\;=\;4\;\times\;(Side)}

\sf{Perimeter\;of\;Circle\;=\;2\pi r}

Similar questions