Math, asked by farhatkhatoon369, 5 months ago

find the area of a hexagonal park of side 100 m, if O in the figure represent the center of the park and OM=50√3.​

Answers

Answered by Jiya6282
6

\red{\textbf{Answer :-}} = 15000 \sqrt{3}{m}^{2}

Step-by-step explanation:

\red{\textbf{Given :-}}

\textsf{side = 100 m}

AB = BC =CD=DE=EF = AF = 100m

OM = 50 \sqrt{3 \: }  \: m

\red{\textbf{To find :-}}

\textsf{Area of hexagonal park.}

\textsf{According to the question, }

\red{\textbf{Area of hexagon=}}

6 ×\textsf{Area of equilateral triangle }

so, \: area \: of \: hexagonal \: park,

6 ×   \LARGE \frac{\sqrt{3}  \:  \:  }{4} \small {a}^{2}

6 ×   \LARGE\frac{\sqrt{3} }{4}\small (100 {)}^{2}

6 ×  \LARGE\frac{ \sqrt{3} }{4}  \:  \: \small 100 * 100

 = 15000 \sqrt{3}{m}^{2}

\textsf{So, Area of the hexagonal park } = 15000 \sqrt{3}{m}^{2}

Similar questions
Math, 5 months ago