find the area of a parallelogram ABCD in which ab 14 cm BC 10 cm and 16 cm
Answers
Answered by
0
Answer:
138.56 cm³
Step-by-step explanation:
In Δ ABC,
Using Heron's Formula,
S = (a + b + c)/2
⇒ S = (10 + 14 +16)/2
⇒ S = 40/2
⇒ S = 20
Area = \sqrt{S(S - a)(S - b)(S - c)}S(S−a)(S−b)(S−c)
∴ Area of the triangles = \sqrt{20(20 - 10)(20 - 14)(20 - 16)}20(20−10)(20−14)(20−16)
⇒ Area of Δ ABC = \sqrt{20(10)(6)(4)}20(10)(6)(4)
⇒ Area = √4800
⇒ Area = 10√48
⇒ Area = 10√(2 × 2 × 2 × 2 × 3)
⇒ Area = 10 × 2 × 2√3
⇒ Area of Δ ABC = 40√3 cm²
∴ Area of Δ ABC = 69.28 cm².
We know,
Area of the Δ ADC = Area of the ΔABC.
[∵ Both the triangles are congruent)
∴ Area of the Parallelogram = 2 × Area of Δ ABC.
⇒ Area of the Parallelogram = 2 × 69.28 cm²
∴ Area of the Parallelogram = 138.56 cm².
brainliest pls
Similar questions