Math, asked by sushanths, 1 year ago

find the area of a quadrant of a circle whose circumference is 44cm

Answers

Answered by Mankuthemonkey01
16
Simply, quadrant of a circle is 1/4 of its area.


Area= πr²
=> Area of quadrant = 1/4πr²

Given circumference = 44
Circumference = 2πr = 44
r = 44/2π

r =  \frac{44}{2 \times  \frac{22}{7} }  \\  =  > r =  \frac{44}{2 \times 22}  \times 7 \\  =  > r = 7
So r = 7


Now area of quadrant = 1/4 πr²
=
 \frac{1}{4}  \times  \frac{22}{7}  \times 49 \\  =  \frac{1}{4}  \times 22 \times 7 \\  =  \frac{77}{2}  \\  = 38.5
hence area of given quadrant is 38.5cm²



Hope it helps dear friend ☺️✌️✌️

shoyu: thanx bhai
Mankuthemonkey01: welcome bhai
shoyu: hmmm
Answered by Anonymous
21

Given,

\sf{Circumference\:of\:the\:circle\:is\:44\:cm}

To find,

\sf{Area\:of\:quadrant}

Solution,

It should be noted that a quadrant of a circle is a sector which is making an angle of 90°

\sf{Let\:the\:radios\:of\:the\:circle\:be\:r}

  • As,

\large{\sf{C=2πr=44}}

\large\sf{⇒R=\frac{44}{2π}\:cm}

\large\sf{⇒ R=7\:cm}

  • So,

\bf{Area\:of\:the\:quadrant,}

\sf{=  \frac{θ}{360°} ×πr^2}

Here, θ = 90°

  • So,

\sf\large{A=\frac{90°}{360°}×πr^2\:cm^2}

\sf\large{=\frac{1}{4}×π (7)^2\:cm^2}

\sf\large{=\frac{1}{4}×π×7×7\:cm^2}

\sf\large{=\frac{1}{4}×\frac{22}{7}×7×7\:cm^2}

\sf\large{=\frac{77}{2}\:cm^2}

\sf\large{=38.5\:\:cm^2}

____________________________

 \large{ \underline{ \overline{ \mid{ \rm{ \red{Answer→38.5\:\:cm^2}} \mid}}}}

____________________________

Similar questions