Math, asked by harshvaghela7032, 10 months ago

find the area of a quadrilateral abcd formed by the point a(-2,-2) b(5,1) c(2,4) d(-1,5)​

Answers

Answered by Anonymous
4

Answer:

26 sq. units

Step-by-step explanation:

Let the vertices be A(-2,-2) B(5,1) C(2,4), D(-1,5)​

Then, we have  

(x₁, y₁)  =  (-2, -2)

(x₂, y₂)  =  (5,1)

(x₃, y₃)  =  (2,4)

(x₄, y₄)  =  (-1,5)

Area of triangle ABC is  

(1/2) * { (x₁y₂ + x₂y₃ + x₃y₄ + x₄y₁) - (x₂y₁ + x₃y₂ + x₄y₃ + x₁y₄) }

=  (1/2) *  {[-2 + 20 + 10 + 2] - [-10 + 2 + -4  - 10] }

=  (1/2) *  { [30] - [-22] }

=  (1/2) *  { 30 + 22 }

=  (1/2) *  { 52 }

= 26 sq.units

Hence, Area of quadrilateral = 26 sq. units.

#Hope my answer helped you!

Answered by gurveernarain82
0

Step-by-step explanation:

Let the vertices be A(-2,-2) B(5,1) C(2,4), D(-1,5)​

Then, we have  

(x₁, y₁)  =  (-2, -2)

(x₂, y₂)  =  (5,1)

(x₃, y₃)  =  (2,4)

(x₄, y₄)  =  (-1,5)

Area of triangle ABC is  

(1/2) * { (x₁y₂ + x₂y₃ + x₃y₄ + x₄y₁) - (x₂y₁ + x₃y₂ + x₄y₃ + x₁y₄) }

=  (1/2) *  {[-2 + 20 + 10 + 2] - [-10 + 2 + -4  - 10] }

=  (1/2) *  { [30] - [-22] }

=  (1/2) *  { 30 + 22 }

=  (1/2) *  { 52 }

= 26 sq.units

Hence, Area of quadrilateral = 26 sq. units.

Hope this was g8 helpful 4 u

Similar questions