Math, asked by vishakhajagarwal, 4 months ago

Find the area of a quadrilateral ABCD in which AB = 8 cm, BC = 6 cm, CD = 8 cm, DA = 10 cm and AC = 10 cm.​

Answers

Answered by samanarizvi144
11

Step-by-step explanation:

Given:

\text{In quardilateral ABCD,}In quardilateral ABCD,

\text{AB=8 cm, BC=6 cm, CD=8 cm, AD=10 cm and AC= 10 cm}AB=8 cm, BC=6 cm, CD=8 cm, AD=10 cm and AC= 10 cm

\textbf{To find:}To find:

\text{Area of quadrilateral ABCD}Area of quadrilateral ABCD

\textbf{Solution:}Solution:

\textbf{Area of triangle ABC:}Area of triangle ABC:

\text{AB= 8 cm, BC= 6 cm and AC=10 cm}AB= 8 cm, BC= 6 cm and AC=10 cm

\text{Here,}\;AB^2+BC^2=AC^2Here,AB

2

+BC

2

=AC

2

\implies\,\triangle\,ABC\;\text{right angled triangle}⟹△ABCright angled triangle

\text{Area of triangle ABC=}\dfrac{1}{2}{\times}b{\times}hArea of triangle ABC=

2

1

×b×h

\text{Area of triangle ABC=}\dfrac{1}{2}{\times}8{\times}6Area of triangle ABC=

2

1

×8×6

\text{Area of triangle ABC=}4{\times}6=24\,\text{square cm.}Area of triangle ABC=4×6=24square cm.

\textbf{Area of triangle ACD:}Area of triangle ACD:

\text{AC=10 cm, CD=8 cm, AD=10 cm}AC=10 cm, CD=8 cm, AD=10 cm

s=\dfrac{a+b+c}{2}s=

2

a+b+c

s=\dfrac{10+8+10}{2}=14s=

2

10+8+10

=14

\text{By using Heron's formula}By using Heron’s formula

\textbf{Area of triangle=}Area of triangle=

=\bf\sqrt{s(s-a)(s-b)(s-c)}=

s(s−a)(s−b)(s−c)

=\sqrt{14(14-10)(14-8)(14-10)}=

14(14−10)(14−8)(14−10)

=\sqrt{14(4)(6)(4)}=

14(4)(6)(4)

=4\sqrt{14(6)}=4

14(6)

=8\sqrt{21}\;\text{square cm.}=8

21

square cm.

\textbf{Area of quadrilateral ABCD}=\textbf{Area of triangle ABC}+\text{Area of triangle ACD}Area of quadrilateral ABCD=Area of triangle ABC+Area of triangle ACD

=24+8\sqrt{21}\;\text{square cm.}=24+8

21

square cm.

\therefore\textbf{Area of quadrilateral ABCD is $\bf24+8\sqrt{21}\;\text{square cm.}$}∴Area of quadrilateral ABCD is 24+8

21

square cm.

Find more:

In quadrilateral ABCD, angleB = angleD= 90°,

AB = 7 cm, AC = 25 cm, CD = 20 cm.

Find the area of ABCD

i hope it's helpful to u. ❤

Similar questions