Math, asked by rmjyothi1990, 8 months ago

Find the area of a quadrilateral one of whose diagonal is 18 cm long and the length of perpendiculars from the other two vertices are 4.3 cm and 5.6 cm respectively *​

Answers

Answered by pandaXop
27

Area = 89.1 cm²

Step-by-step explanation:

Given:

  • Diagonal of quadrilateral is 18 cm.
  • Perpendiculars drawn on diagonal from vertices are of 4.3 and 5.6 cm.

To Find:

  • What is the area of quadrilateral ?

Solution: Let ABCD be a quadrilateral in which

  • AC = Diagonal = 18 cm.
  • DE = Perpendicular on AC = 4.3 cm.
  • BF = Perpendicular on AC = 5.6 cm.

Now, in ∆ADC and ∆ABC

  • AC = Base
  • DE = Height

  • AC = Base
  • BF = Height

As we know that

Area of = 1/2(Base)(Height)

\implies{\rm } ar(ADC) = 1/2(18)(4.3)

\implies{\rm } ar(ADC) = 9(4.3)

\implies{\rm } ar(ADC) = 38.7 cm²

Similarly,

\implies{\rm } ar(ABC) = 1/2(18)(5.6)

\implies{\rm } ar(ABC) = 9(5.6)

\implies{\rm } ar(ABC) = 50.4 cm²

∴ Area of ABCD = ar(ADC + ABC)

➭ Area of quadrilateral = 38.7 + 50.4 = 89.1 cm²

Attachments:
Answered by rocky200216
57

\huge\mathcal{\green{\underbrace{\orange{SOLUTION:-}}}}

GIVEN :-

  • The diagonal of a quadrilateral is 18cm .

  • The length of the perpendicular from the other two vertices are 4.3cm and 5.6cm respectively .

TO FIND :-

  • Area of the quadrilateral .

CALCULATION :-

✍️ See the attachment diagram .

✍️ As shown in the diagram,

\red\checkmark\:\mathcal{\red{\underline{Area\:of\:the\:quadrilateral\:ABCD\:=\:Area\:of\:\triangle{ABC}\:+\:Area\:of\:\triangle{ADC}\:}}}

\bigstar\:\rm{\red{\boxed{\purple{Area\:of\:\triangle{ABC}\:=\:\dfrac{1}{2}\:\times{AC}\:\times{BQ}\:}}}}

\bigstar\:\rm{\red{\boxed{\purple{Area\:of\:\triangle{ADC}\:=\:\dfrac{1}{2}\:\times{AC}\:\times{DP}\:}}}}

✍️ Here,

  • AC = 18cm .

  • DP = 4.3cm .

  • BQ = 5.6cm .

\rm{\implies\:Area\:of\:\Box{ABCD}\:=\:\dfrac{1}{2}\:\times{AC}\times{BQ}\:+\:\dfrac{1}{2}\:\times{AC}\times{DP}\:}

\rm{\implies\:Area\:of\:\Box{ABCD}\:=\:\dfrac{1}{2}\:\times{AC}\:\times\:(BQ\:+\:DP)\:}

\rm{\implies\:Area\:of\:\Box{ABCD}\:=\:\dfrac{1}{2}\:\times{18}\:\times\:(4.3\:+\:5.6)\:}

\rm{\implies\:Area\:of\:\Box{ABCD}\:=\:9\times{9.9}\:}

\rm{\green{\boxed{\orange{\implies\:Area\:of\:\Box{ABCD}\:=\:89.1\:cm^2\:}}}}

\therefore <font color=baby> The area of the quadrilateral is “89.1cm²” .

Attachments:
Similar questions