Math, asked by hafsa64, 2 months ago

find the area of a rectangle when lenght is x+4 and breadth is x-2 and perimeter is 56​

Answers

Answered by MяMαgıcıαη
144

\red{\bigstar}\underline{\underline{\textsf{\textbf{ Given }}}}\begin{cases} & \sf{Length\:of\;a\:rectangle = \bf{(x + 4)\:units}} \\ & \sf{Breadth\:of\:a\:rectangle = \bf{(x - 2)\:units}} \\ & \sf{Perimeter\;of\;a\:rectangle = \bf{56\;units}} \end{cases}\\ \\

\red{\bigstar}\underline{\underline{\textsf{\textbf{ To\:Find\::- }}}}

  • \sf{Area\:of\:a\:rectangle\:=\:\bf{?}}

\red{\bigstar}\underline{\underline{\textsf{\textbf{ Answer\::- }}}}

  • \sf{Area\:of\:a\:\:rectangle\:=\:\bf{187\:sq.units}}

\red{\bigstar}\underline{\underline{\textsf{\textbf{ Step\:by\:step\:explanation\::- }}}}

ㅤㅤㅤㅤㅤㅤ━━━━━━━━━━

  • Using formula of perimeter of rectangle to find value of x.

\qquad\red\bigstar\:{\tiny{\underline{\boxed{\bf{\green{Perimeter_{(Rectangle)} = 2(Length + Breadth)}}}}}}

\red{\bigstar}\underline{\underline{\textsf{\textbf{ Putting\:all\:known\:values\::-}}}}

\dashrightarrow\qquad\sf 56 = 2[(x + 4) + (x - 2)]

\dashrightarrow\qquad\sf 56 = 2(x + 4 + x - 2)

\dashrightarrow\qquad\sf 56 = 2(x + x + 4 - 2)

\dashrightarrow\qquad\sf 56 = 2(2x + 2)

\dashrightarrow\qquad\sf 56 = 4x + 4

\dashrightarrow\qquad\sf 56 - 4 = 4x

\dashrightarrow\qquad\sf 52 = 4x

\dashrightarrow\qquad\sf \dfrac{52}{4} = x

\dashrightarrow\qquad\sf \dfrac{\cancel{52}}{\cancel{4}} = x

\dashrightarrow\qquad{\boxed{\frak{\pink{x = 13}}}}\:\purple\bigstar

\red{\bigstar}\underline{\underline{\textsf{\textbf{ Hence, }}}}

  • Length of a rectangle = x + 4 = 13 + 4 = 17 units.
  • Breadth of a rectangle = x - 2 = 13 - 2 = 11 units.

ㅤㅤㅤㅤㅤㅤ━━━━━━━━━━

  • Using formula of area of rectangle to find it's area.

\qquad\red\bigstar\:{\tiny{\underline{\boxed{\bf{\green{Area_{(Rectangle)} = Length\:\times\:Breadth}}}}}}

\red{\bigstar}\underline{\underline{\textsf{\textbf{ Putting\:all\:known\:values\::- }}}}

\dashrightarrow\qquad\sf Area_{(Rectangle)} = 17 \:\times\: 11

\dashrightarrow\qquad{\boxed{\frak{\pink{ Area_{(Rectangle)} = 187\:sq.units}}}}\:\purple\bigstar

ㅤㅤㅤㅤㅤㅤ━━━━━━━━━━

\small\therefore\:{\underline{\sf{Hence,\:area\:of\:a\:rectangle\:is\:\bf{187\:sq.units}\:\sf{respectively.}}}}

\red{\bigstar}\underline{\underline{\textsf{\textbf{ Note\::- }}}}

  • Diagram is in attachment !

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Attachments:
Answered by Anonymous
190

\pink{\dag}{\underline{\textsf{\textbf{ Given\::- }}}}

• Length = x + 4 units

• Breadth = x - 2 units

• Perimeter of rectangle = 56 units

\pink{\dag}{\underline{\textsf{\textbf{ To\:find\::- }}}}

• Area of rectangle

\pink{\dag}{\underline{\textsf{\textbf{ Solution\::- }}}}

\implies\sf Length\: of \:rectangle\: = x + 4 \: units

\implies\sf Breadth \: of rectangle \: = x - 2 \: units

\implies\sf Perimeter \: of \: rectangle = 56 units

We have to find the value of x.

\pink{\dag}{\underline{\textsf{\textbf{ Perimeter \: of \: rectangle = 2(length + breadth)  }}}}

\implies\sf 56 = 2 (l + b)

\implies\sf 56 = 2 (x + 4 + x - 2)

\implies\sf 56 = 2 (2x + 2)

\implies\sf 56 = (4x + 4)

\implies\sf 56 - 4 = 4x

\implies\sf 52 = 4x

\implies\sf  x = \dfrac{52}{4}

\implies\sf  x =\cancel\dfrac{52}{4}

\implies\sf x = 13

\sf\green{Length\: of \:rectangle \:= x + 4 = 13 + 4 = 17\: units}

\sf\green{Breadth\: of\: rectangle\: = x - 2 = 13 - 2 = 11 \:units}

\pink{\dag}{\underline{\textsf{\textbf{ Formula :-}}}}

\implies\sf  Area \: of \: rectangle = length \times breadth

\implies\sf  Area \: of \: rectangle = 17units \times 11units

\implies\sf  Area \: of \: rectangle = 187sq.units

\pink{\dag}{\underline{\textsf{\textbf{ Therefore,}}}}

\large\sf\red {Area\: of \:rectangle\: = 187sq.units}

Attachments:
Similar questions