Math, asked by goswamitanishq666, 5 months ago

Find the area of a rectangle whose length is twice the breadth and perimeter is 30 cm.
Find the perimeter of
square whose area is 16 cm².
in the shape of the rectangle whose dima​

Answers

Answered by lathpiyush
2

Answer:

Step-by-step explanation: Area of a rectangle= l*b Perimeter of a rectangle= 2(l+b)

2(2x+x)= 30cm

= 4x+2x= 30cm

6x= 30cm

x= 5cm

length= 2x= 2*5cm= 10cm

breadth= x= 5cm

area = l*b

= 10cm*5cm

= 50cm²(area of the rectangle)

Answered by Anonymous
1

  \huge\underline{ \underline{ \texttt{GIVEN}}}

  • Perimeter of rectangle=30cm
  • Length is double of Breadth of rectangle.
  • Area of square=16cm²

  \huge\underline{ \underline{ \texttt{TO \: FIND}}}

  • Area of rectangle.
  • Perimeter of square.

  \huge\underline{ \underline{ \texttt{SOLUTION}}}

Let breadth of rectangle be x

then length of rectangle will be 2x

  \large\underline{ \boxed{ \sf \blue{ \bigstar Perimeter  \: of  \: rectangle \: = 2(L+B)}}}

30cm=2(2x+x)

30cm=2(3x)

30cm=6x

 \sf \frac{30}{6} cm = x

 \sf 5cm = x

  \underline{\boxed{ \sf \large \purple{  \bigstar \: Area \:  of  \: rectangle =length×breadth}}}

 \sf \implies2x \times x

  \implies\sf2 {x}^{2}

 \implies \sf (2 \times 5 \times 5)cm {}^{2}

  \Large \red{\sf \implies5 0 {cm}^{2} }

__________________________

 \large \underline{ \boxed{ \sf  \pink{\bigstar Area  \: of  \: Square=Side²}}}

 \sf16 {cm}^{2}  =  side {}^{2}

 \sf \sqrt{16 {cm}^{2} }  = side \: of \: square

 \sf4cm = side \: of \:  square

 \large \underline{ \boxed{ \sf \green{ \bigstar Perimeter\:of\: square=4×side}}}

 \sf4 \times side

 \sf 4 \times 4cm

 \Large\sf \fbox{  \orange{16cm = perimeter \: of \: square}}

Similar questions