Math, asked by premraj14015, 1 year ago

find the area of a rectangular plot, one side of which measures 35 m and the diagonal is 37 m.​

Answers

Answered by KaushikAryan07
0

Step-by-step explanation:

Let ABCD be the rectangle

Length = 35m & Diagonal = 37m

Therefore, Breadth^2 = D^2 - L^2

Breadth^2 = 37m^2 - 35m^2

Breadth^2 = 1369m^2 - 1225m^2

Breadth^2 = 144m^2

Breadth = 12m

A/Q, Area = LxB

Area = 35mx12m

Area = 420 m^2

Answered by Anonymous
3

\large{\underline{ \underline {\sf{\maltese \: {Given:-}}}}}

  • Side of the rectangular field = 35 m
  • Diagonal of the rectangular field = 37 m

\large{\underline{ \underline {\sf{\maltese \: {To \: find:-}}}}}

  • Area of the rectangular field = ?

\large{\underline{ \underline {\sf{\maltese \: {Solution:-}}}}}

Let ABCD be the rectangular plot.

 \quad \quad \sf{ \therefore{AB=35 \: m}} \\  \quad \quad \sf{ \therefore{AC=37\: m}}

Let BC = (x) m

\sf{From \: \triangle{ABC,}  \: we \: have:}

 \quad \quad \bull  \: \bf{AC^2=AB^2+BC^2}

 \qquad \quad  {:} \longrightarrow \tt{ {37}^{2} =  {35}^{2} +  {x}^{2}   }

 \qquad \quad  {:} \longrightarrow \tt{  {x}^{2} =  {37}^{2}   -  {35}^{2}   }

 \qquad \quad  {:} \longrightarrow \tt{  {x}^{2} =    \bigg(37 + 35 \bigg)\bigg(37  - 35 \bigg)   } \\

 \qquad \quad  {:} \longrightarrow \tt{  {x}^{2} =  72 \times 2   }

 \qquad \quad  {:} \longrightarrow \tt{  {x}^{2} =  144 }

 \qquad \quad  {:} \longrightarrow \tt{  {x} =   \sqrt{144} }

 \qquad \quad  {:} \longrightarrow \tt{  {x} =  12}

 \quad  \sf{ \therefore  \quad{BC=12 \: m}}

 \quad  \sf{ \therefore  \quad{area \: of \: the \: plot =  \bigg(35 \times 12 \bigg) {m}^{2} }}  \\    \:  \:  \:  \quad \qquad\qquad \qquad  \sf{=420 {m}^{2}  }

\large{\underline{ \underline {\sf{\maltese \: {Answer:-}}} }}

  • The area of the rectangular plot is 420 square metres

Attachments:
Similar questions