Math, asked by ayushipalwankar8041, 1 year ago

Find the area of a rhombus each side of which measure 20cm and one of whose diagnal is 24cm

Answers

Answered by BrainlyConqueror0901
88

Answer:

\huge{\red{\boxed{\boxed{\green{\sf{AREA=312cm^{2}}}}}}}

Step-by-step explanation:

\huge{\red{\boxed{\boxed{\green{\underline{\red{\sf{SOLUTION-}}}}}}}}

□Side= 20cm

□Diagonal= 24cm

To find:

○Area of rhombus

we \: know \: the \: properties \: of \: rhombus \\ (1)all \: sides \: are \: equal \\ (2)diagonals \: bisects \: each \: other \: at \: 90 \degree \\ (3)area \: of \: rhombus =   \frac{1}{2} \times  d1 \times d2 \\  \\ according \: to \: these \: information \:  \\ first \: we \: find \: d2 \\  side(hypotenuse) = 20cm \\ d1 = 24cm \\ so \: perpendicular \: = 12cm \\  \\  {h}^{2}  =  {p}^{2}  +  {b}^{2}  \\  = ) {20}^{2}  =  {12}^{2}  +  {b}^{2}  \\  = )400 - 144 =  {b}^{2}  \\   = ){b }^{2}  = 256 \\ = ) b =  \sqrt{256}  \\  = )b = 13cm \\  \\ d2 = 2 \times b = 2 \times 13 = 26cm \\  \\ area \: of \: rhombus =  \frac{1}{2}  \times d1 \times d2 \\   = ) \frac{1}{2}  \times 24 \times 26 \\  = )12 \times 26 \\  = )312cm^{2}

\huge{\red{\boxed{\boxed{\green{\sf{AREA=312cm^{2}}}}}}}

_________________________________________

Answered by Anonymous
3

Answer:

A = 384cm²

a = Side = 20cm

p = Diagonal = 24 cm

a = pq / 2

a = p² + q² / 2

a = 1 / 2 p √4² - p²

= 1 / 2 • 24 • √ 4.20² - 24² = 384 cm³

Similar questions