★Find the area of a rhombus each side of which measures 20cm and one of whose diagonals is 24cm.
Answers
Given :
- Each side of the rhombus measures 20 cm.
- And also one of its diagonals is 24 cm.
To Find :
- Area of the rhombus.
Calculation :
Here,
- AB = 20 cm
- BO = 12 cm
We know that diagonals of a rhombus bisects each other at right angle [at ]
In right , by Pythagoras theorem.
Now, calculating,
Therefore,
According to the Question,
We know that,
Where,
- Diagonal 1 is 24 cm [Given]
- Diagonal 2 is 32 cm
Putting the values,
Hence, area of the rhombus is .
Answer:
Given :
Each side of the rhombus measures 20 cm.
And also one of its diagonals is 24 cm.
To Find :
Area of the rhombus.
Calculation :
Here,
AB = 20 cm
BO = 12 cm
We know that diagonals of a rhombus bisects each other at right angle [at \tt \: 90°90° ]
In right \Delta \bf{AOB}ΔAOB , by Pythagoras theorem.
\begin{gathered} \sf{\longrightarrow AB^2 \: = \: BO^2 \: + \: AO^2} \\ \\ \\ \sf{\longrightarrow (20)^2 \: = \: (12)^2 \: + \: AO^2 } \\ \\ \\ \sf \: \longrightarrow \: 400 \: - \: 144 \: = AO^2 \: \\ \\ \\ \longrightarrow \underline{\boxed{\bf{256 \: = \: \: AO^2 }}} \: \end{gathered}
⟶AB
2
=BO
2
+AO
2
⟶(20)
2
=(12)
2
+AO
2
⟶400−144=AO
2
⟶
256=AO
2
Now, calculating,
\begin{gathered} \sf{\longrightarrow AO \: = \: \sqrt{256} \: cm^2} \\ \\ \\ \longrightarrow \underline{\boxed{\bf{AO \: = \: 16 \: cm }}} \: \end{gathered}
⟶AO=
256
cm
2
⟶
AO=16cm
Therefore,
\begin{gathered} \sf{\longrightarrow BD \: = \: 16 + 16 \: cm} \\ \\ \\ \longrightarrow \underline{\boxed{\bf{BD \: = \: 32 \: cm }}} \: \end{gathered}
⟶BD=16+16cm
⟶
BD=32cm
\dag† According to the Question,
We know that,
\boxed{\bf{ Area \: of \: rhombus \: = \dfrac{1}{2} \: \times d_1 \: \times d_2 }}
Areaofrhombus=
2
1
×d
1
×d
2
Where,
Diagonal 1 is 24 cm [Given]
Diagonal 2 is 32 cm
Putting the values,
\begin{gathered} \sf{\longrightarrow \dfrac{1}{2} \: \times \: d_1 \times \: d_2} \\ \\ \\ \sf \: {\longrightarrow \dfrac{1}{2} \: \times \: 24 \: cm \: \times \: 32 \: cm} \\ \\ \\ \longrightarrow \underline{\boxed{\bf{ 384 \: cm^2 }}} \: \purple{\bigstar} \end{gathered}
⟶
2
1
×d
1
×d
2
⟶
2
1
×24cm×32cm
⟶
384cm
2
★
\therefore∴ Hence, area of the rhombus is \bf 384 \: cm^2384cm
2
.