Math, asked by devhpatel2205, 3 months ago

Find the area of a rhombus having each side equal to 13 cm and one of whose diagonals is 24 cm.​

Answers

Answered by sia1234567
2

\small\fbox{★ MATHS QUESTION !! ★}</p><p>

\small\fbox\purple{answer  -  }</p><p>

\small\bold{\: ☯︎ \:given - }

  \pink{\mapsto \:each \: side \: of \: rhombus = 13 \: cm } \\   \pink{\mapsto \:one \: diagonal \:  = 24 \: cm}

\small\bold{☯︎ \:  find - }</p><p>

  \color{gold}\star \: area \: of \: the \: rhombus

\huge\mathfrak{solution}</p><p>

 \longmapsto \: one \:  side \:  of \: rhombus = 13 \: cm \\

  \longmapsto \: length \: of \: one \: diagonal  = 24 \: cm

 \red{ \star\small\fbox{ property \: of \: rhombus }}</p><p>

 \color{plum} \leadsto\: diagonals \: bisect \: each \: other\: at \: right \: angles

 \orange{ \to \: now \: taking \:  \frac{1}{4}th \: potion \: of \: rhombus \: (triangle) }

 \blue{ \hookrightarrow \: base = 12 \: cm }\\   \blue{\hookrightarrow \: hypotenuse = 13 \: cm}

 \circ  \underline{\: applying \: pythagoras \: theorem \:  - }

  \mapsto \:  2\sqrt{ {13}^{2} -  {12}^{2}  }  \\  \mapsto \:  2\sqrt{169 - 144} \\ \hookrightarrow \:  2\sqrt{25}  = 2 \times 5 = 10

 \pink{ \star \: other \: diagonal \:  = 10}

now \:  -  \\  \green{area =  \frac{1}{2} \times (product \: of \: diagonals) } \\   \color{lightgreen}\frac{1}{2} \times 24 \times 10 =  {120 \: cm}^{2}

 \small\color{teal}  { = 120 \: cm}^{2} {\checkmark }

______________________________

Similar questions