Math, asked by khushi6538, 9 months ago

Find the area of a rhombus having each side equal to 15 cm and one of whose diagonals is 24 cm​

Answers

Answered by PraptiMishra05
7

\huge\bold\red{Answer}

Let ABCD be the rhombus where diagonals intersect at O.

Then, AB = 15 cm and AC = 24 cm.

The diagonals of a rhombus bisect each other at right angles.

Therefore, Δ AOB is a right-angled triangle, right angled at O such that

OA =  \frac{1}{2} AC  = 12 cm and AB  = 15 cm.

By Pythagoras theorem, we have,

(AB)² = (OA)² + (OB)²

⇒ (15)² = (12)² + (OB)²

⇒ (OB)² = (15)² − (12)²

⇒ (OB)² = 225 − 144 = 81

⇒ (OB)² = (9)²

⇒ OB = 9 cm

∴ BD = 2 x OB = 2 x 9 cm = 18 cm

Hence,

Area of the rhombus ABCD = ( \frac{1}{2} × AC × BD)=( \frac{1}{2} × 24 × 18) = 216 cm²

<font color="red"><b ><marquee> Hope it helps

follow me

Attachments:
Similar questions