Math, asked by aryabhagwati537, 10 months ago

find the area of a rhombus if it's vertices are (3,0) (4,5)(-1,4) and (-2,-1) take in order.​

Answers

Answered by rambirSharma
1

Step-by-step explanation:

1/2(15-0 + 16+5 + 1+8 )

1/2(45)

45/2

=24.5

Answered by Anonymous
19

SOLUTION:-

Given:

Vertices of rhombus ABCD are;

⚫A(3,0)

⚫B(4,5)

⚫C(-1,4)

⚫D(-2,-1)

Therefore,

Length of diagonal AC:

 =  >  \sqrt{(3 - ( - 1)) {}^{2}  + (0 - 4) {}^{2} }  \\  \\  =  >   \sqrt{(3 + 1) {}^{2} + (4) {}^{2}  }  \\  \\  =  >  \sqrt{(4) {}^{2}  + (4) {}^{2} }  \\  \\  =  >  \sqrt{16  + 16}  \\  \\  =  >  \sqrt{32}  \\  \\  =  > 4 \sqrt{2}

Length of diagonal BD:

 =  >  \sqrt{(4 - ( - 2)) { }^{2}  + (5 - ( - 1)) {}^{2} }  \\  \\  =  >  \sqrt{(4 + 2) {}^{2} + (5 + 1) {}^{2}  }  \\  \\  =  >  \sqrt{( 6) {}^{2}  + (6) {}^{2} }  \\  \\  =  >  \sqrt{36 + 36}  \\  \\  =  >  \sqrt{72}   \\  \\   =  > 6 \sqrt{2}

Now,

Area of rhombus ABCD:

 \frac{1}{2}  \times 4 \sqrt{2}  \times 6 \sqrt{2}  \\  \\  =  > 2 \sqrt{2}  \times 6 \sqrt{2}  \\  \\  =  > 12 \times 2 \\  \\   =  > 24 \: sq. \: units

Hope it helps ☺️

Attachments:
Similar questions