Math, asked by champu2652, 8 months ago

Find the area of a rhombus if its vertices are (3, 0), (4, 5), (-1, 4) and (-2, -1) taken in order.

Answers

Answered by ShírIey
62

Let us Consider that vertices are A(3,0), B(4,5), C(-1,4) & D(-2,-1).

We know that,

{\underline{\boxed{\sf{\red{Area\; of \; Rhombus\; =\; \dfrac{1}{2}\; \times\; (Product\; of\; its\; Diagonals)}}}}}

Here, Diagonals are AC & BD

\diamond\bold{\underline{\sf{Now,\; Finding\; AC}}}

\bold{\underline{\sf{Using\; Distance\; Formula}}}

\longrightarrow\large{\underline{\boxed{\sf{\pink{\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}}}}}}

Now,

:\implies\sf\; AC = \sqrt{(-1 - 3)^2 - (4 -0)^2}

:\implies\sf\;AC = \sqrt{(-4)^2 + (4)^2}

:\implies\sf\; AC = \sqrt{(4)^2 + (4)^2}

:\implies\sf\;AC = \sqrt{2(4)^2}

:\implies\sf\;AC = \sqrt{2} \times\; 4

:\implies\sf\; AC =4\sqrt{2}

\rule{150}3

\diamond\bold{\underline{\sf{Now,\; Finding\; BD}}}

:\implies\sf\;BD = \sqrt{(-2 -4)^2 + (-1 - 5)^2}

:\implies\sf\; BD = \sqrt{(-6)^2 - (-6)^2}

:\implies\sf\;BD = \sqrt{(6)^2 + (6)^2}

:\implies\sf\;BD = \sqrt{2(6)^2}

:\implies\sf\; BD = \sqrt{2} \times\; 6

:\implies\sf\; 6\sqrt{2}

\rule{150}3

Area of Rhombus = \sf\; \dfrac{1}{2} \times\; AC \times\; BD

Here, AC = \sf \; 4\sqrt{2}

BD = \sf\; 6\sqrt{2}

Putting Values:-

:\implies\sf\; \dfrac{1}{2}\; \times 4\sqrt{2} \times 6\sqrt{2}

:\implies\sf\; 2\sqrt{2} \;\times\; 6\sqrt{2}

:\implies\sf\; 2 \times \; 6 \times\; \sqrt{2} \times \; \sqrt{3}

:\implies\sf\; 12 \times\; 2

:\implies\large{\underline{\boxed{\sf{\pink{24\; Square\; units}}}}}

\bold{\underline{\sf{\blue{Hence\; Area\; of \; Rhombu\; is \;24\; Sq.\; units}}}}

\rule{150}3

Answered by Anonymous
45

 \bf \boxed{ \bf \: Question:-}

Find the area of a rhombus, if its vertices are (3,0), (4,5), (–1,4) and (–2, –1) taken in order.

 \bf \pink{Note : - }  \bf \: Area \: of \: rhombus =  \frac{1}{2} \: (Product \: of \: its \: diagonals) \\

  \boxed{\bf{Solution:-}}

Let A (3, 0), B (4, 5), C (–1, 4) and D (–2, –1) be the vertices of the rhombus ABCD.

 \therefore \:  \bf \: Diagonal \: AC \:  =  \sqrt{( - 1 - 3) {}^{2}  + (4 - 0) {}^{2} }

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  [\because \:  \bf \: distance \:  =  \sqrt{(x_2 \:  - x_1 ) {}^{2} + (y_2 \:  - y_1) {}^{2}  }]

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \bf =  \sqrt{( - 4) {}^{2}  + 4 {}^{2} }

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \bf =  \sqrt{32}  = 4 \sqrt{2}  \: units

 \bf \: Diagonal \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: BD =  \sqrt{( - 2 - 4) {}^{2}  + ( - 1 - 5) {}^{2} }

 \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:\bf =  \sqrt{( - 6) {}^{2}  + ( - 6) { }^{2} }    = \sqrt{36 + 36}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \ \bf  = \:   \sqrt{72}  = 6 \sqrt{2 \: }  \: units

 \therefore \:  \:  \:  \bf \: Area \: of \: the \: rhombus \: \red{ABCD}

  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \bf =  \:  \frac{1}{2} \times Product \: of \: its \: diagonals \\

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \ \bf  =  \:  \frac{1}{2} \times AC \times BD \:  \\

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \bf =  \:  \frac{1}{2} \times 4 \sqrt{2}  \times 6 \sqrt{2}  \\

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \bf =  \: 2 \times 6 \times  \sqrt{2}  \times  \sqrt{2}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \bf  =  \: 12 \times 2 =  \red{24 \: sq \: units}.

Similar questions