Math, asked by sudharshan09gamer, 1 month ago

Find the area of a rhombus whose diagonals are 16cm and 30cm.​

Answers

Answered by shahtamu111
0

Step-by-step explanation:

Hi very good morning

HERE IS UR ANSWER

Given: Diagonals AC=30cm and DB=16cm.

Given: Diagonals AC=30cm and DB=16cm.Since the diagonals of the rhombus bisect at right angle to each other.

Given: Diagonals AC=30cm and DB=16cm.Since the diagonals of the rhombus bisect at right angle to each other.Therefore, OD=2DB=216=8cm

Given: Diagonals AC=30cm and DB=16cm.Since the diagonals of the rhombus bisect at right angle to each other.Therefore, OD=2DB=216=8cmand OC=2AC=230=15cm

Given: Diagonals AC=30cm and DB=16cm.Since the diagonals of the rhombus bisect at right angle to each other.Therefore, OD=2DB=216=8cmand OC=2AC=230=15cmNow, In right angle triangle DOC,

Given: Diagonals AC=30cm and DB=16cm.Since the diagonals of the rhombus bisect at right angle to each other.Therefore, OD=2DB=216=8cmand OC=2AC=230=15cmNow, In right angle triangle DOC,(DC)2=(OD)2+(CO)2

Given: Diagonals AC=30cm and DB=16cm.Since the diagonals of the rhombus bisect at right angle to each other.Therefore, OD=2DB=216=8cmand OC=2AC=230=15cmNow, In right angle triangle DOC,(DC)2=(OD)2+(CO)2⇒(DC)2=(8)2+(15)2

Given: Diagonals AC=30cm and DB=16cm.Since the diagonals of the rhombus bisect at right angle to each other.Therefore, OD=2DB=216=8cmand OC=2AC=230=15cmNow, In right angle triangle DOC,(DC)2=(OD)2+(CO)2⇒(DC)2=(8)2+(15)2⇒(DC)2=64+225=289

Given: Diagonals AC=30cm and DB=16cm.Since the diagonals of the rhombus bisect at right angle to each other.Therefore, OD=2DB=216=8cmand OC=2AC=230=15cmNow, In right angle triangle DOC,(DC)2=(OD)2+(CO)2⇒(DC)2=(8)2+(15)2⇒(DC)2=64+225=289⇒DC=289=17cm

Given: Diagonals AC=30cm and DB=16cm.Since the diagonals of the rhombus bisect at right angle to each other.Therefore, OD=2DB=216=8cmand OC=2AC=230=15cmNow, In right angle triangle DOC,(DC)2=(OD)2+(CO)2⇒(DC)2=(8)2+(15)2⇒(DC)2=64+225=289⇒DC=289=17cmPerimeter of the rhombus=4× side

Given: Diagonals AC=30cm and DB=16cm.Since the diagonals of the rhombus bisect at right angle to each other.Therefore, OD=2DB=216=8cmand OC=2AC=230=15cmNow, In right angle triangle DOC,(DC)2=(OD)2+(CO)2⇒(DC)2=(8)2+(15)2⇒(DC)2=64+225=289⇒DC=289=17cmPerimeter of the rhombus=4× side=4×17=68cm

Given: Diagonals AC=30cm and DB=16cm.Since the diagonals of the rhombus bisect at right angle to each other.Therefore, OD=2DB=216=8cmand OC=2AC=230=15cmNow, In right angle triangle DOC,(DC)2=(OD)2+(CO)2⇒(DC)2=(8)2+(15)2⇒(DC)2=64+225=289⇒DC=289=17cmPerimeter of the rhombus=4× side=4×17=68cmThus, the perimeter of rhombus is 68 cm.

HOPE THIS WILL HELP YOU PLEASE MARK ME AS BRAINLIST

Answered by shantipatel2011
0
  • ANSWER : 68cm.

EXPALNATION:

Given: Diagonals AC=30cm and DB=16cm.

Since the diagonals of the rhombus bisect at right angle to each other.

Therefore, OD=

2

DB

=

2

16

=8cm

and OC=

2

AC

=

2

30

=15cm

Now, In right angle triangle DOC,

(DC)

2

=(OD)

2

+(CO)

2

⇒(DC)

2

=(8)

2

+(15)

2

⇒(DC)

2

=64+225=289

⇒DC=

289

=17cm

Perimeter of the rhombus=4× side

=4×17=68cm

Thus, the perimeter of rhombus is 68 cm.

Similar questions