Math, asked by Chughprarthana118, 1 year ago

Find the area of a rhombus whose diagonals measure 6 cm and 8 cm find the side of a rhombus also

Answers

Answered by ihrishi
7

Step-by-step explanation:

Area of a rhombus = product of its diagonals

 = 1/2*6 \:  \times  \: 8 \\  = 24 \:  {cm}^{2}  \\ \: since \: diagonals \: of \: rhombus \: bisect  \\ \: each \: other \: at \: right \: angles. \\ therefore \\ side \: of \: rhombus \:  = \sqrt{ ( { \frac{6}{2} })^{2}  + ( { \frac{8}{2} })^{2} }  \\  =   \sqrt{{3}^{2}  +  {4}^{2} } \:   \\  =  \sqrt{9 + 16 } \\  =  \sqrt{25}  \\  = 5 \: cm \:  \\ thus \: the \:lenght \: of \:  side \: of \\  \: rhombus \: is \: 5 \: cm.

Answered by rajnichoudhary00112
0

Answer:

Area of a rhombus = product of its diagonals

\begin{gathered} = 1/2*6 \: \times \: 8 \\ = 24 \: {cm}^{2} \\ \: since \: diagonals \: of \: rhombus \: bisect \\ \: each \: other \: at \: right \: angles. \\ therefore \\ side \: of \: rhombus \: = \sqrt{ ( { \frac{6}{2} })^{2} + ( { \frac{8}{2} })^{2} } \\ = \sqrt{{3}^{2} + {4}^{2} } \: \\ = \sqrt{9 + 16 } \\ = \sqrt{25} \\ = 5 \: cm \: \\ thus \: the \:lenght \: of \: side \: of \\ \: rhombus \: is \: 5 \: cm.\end{gathered}

=1/2∗6×8

=24cm

2

sincediagonalsofrhombusbisect

eachotheratrightangles.

therefore

sideofrhombus=

(

2

6

)

2

+(

2

8

)

2

=

3

2

+4

2

=

9+16

=

25

=5cm

thusthelenghtofsideof

rhombusis5cm.

Similar questions