Math, asked by rajatsony7275, 1 year ago

Find the area of a rhombus whose perimeter is 80 m and one of whose diagonal is 24m

Answers

Answered by IDJ
4
I hope it helps You ......
Attachments:
Answered by SarcasticL0ve
9

\star\;{\underline{\underline{\frak{AnswEr\;:}}}}\\ \\

\setlength{\unitlength}{1.5 cm}\begin{picture}(0,0)\thicklines\qbezier(0,0)(0,0)(0.8,2.5)\qbezier(3,0)(3,0)(3.8,2.5)\qbezier(0.8,2.5)(0.8,2.5)(3.8,2.5)\qbezier(3,0)(0,0)(0,0)\put(-0.3,-0.2){\sf A}\put(3.1,-0.2){\sf B}\put(3.9,2.8){\sf C}\put(0.7,2.8){\sf D}\put(1.3,1.5){\sf 24 m}\qbezier(0,0)(1.7,1.4)(3.8,2.5)\end{picture}

☯ Let ABCD be the rhombus of perimeter 80 m and diagonal AC = 24 m.

⠀⠀⠀ ⠀━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

We have, \\ \\

:\implies\sf AB + BC + CD + DA = 80\\ \\

:\implies\sf 4AB = 80\qquad\qquad\bigg\lgroup\bf \because\; AB = BC = CD = DA\bigg\rgroup\\ \\

:\implies{\boxed{\sf{\pink{AB = 20 m}}}}\;\bigstar\\ \\

Now, In ∆ABC, we have\\ \\

:\implies\sf 2s = AB + BC + AC\\ \\

:\implies\sf 2s = 20 + 20 + 24\\ \\

\qquad:\implies\sf 2s = 64\\ \\

\qquad:\implies{\boxed{\sf{\purple{s = 32}}}}\;\bigstar\\ \\

⠀⠀⠀ ⠀━━━━━━━━━━━━━━━━━━━━━━━━━━━━

⠀⠀⠀⠀⠀⠀⠀ ⠀☯ Now, Using Heron's Formula,\\ \\

\quad\quad\star\;{\boxed{\sf{\pink{\sqrt{s(s - a)(s - b)(s - c)}}}}}\\ \\

:\implies\sf \sqrt{32(32 - 20)(32 - 20)(32 - 24)}\\ \\

\qquad:\implies\sf \sqrt{32 \times 12 \times 12 \times 8}\\ \\

\qquad\qquad:\implies\sf \sqrt{36864}\\ \\

\qquad\qquad:\implies{\boxed{\sf{\purple{192\;m^2}}}}\;\bigstar\\  \\

\therefore Hence, Area of rhombus ABCD = 2 × 192 m² = 384 m².

Similar questions