Math, asked by ravengerlol, 5 months ago

Find the area of a rhombus whose side is 14 cm and whose altitude is 10 cm. If one of its diagonals is 7 cm long, find the length of the other diagonal.

Answers

Answered by prabhas24480
1

\huge\star\underline\mathfrak\blue{Answer:-}

Answer:

Area of rhombus = 24 cm²

Length of the other diagonal = 6 cm.

Step-by-step explanation:

Hi,

Given the side of the rhombus, b = 6 cm

Also, Given the altitude of rhombus , h = 4 cm,

Area of the rhombus when base(side) and altitude(h)

are given is given by A = base * height

Thus, Area of rhombus = 6 * 4  cm²

Area of rhombus = 24 cm².

Given one of the diagonal is of length  8 cm,

Let d₁ = 8 cm.

Let the length of the other diagonal be d₂.

If d₁, d₂ length of the diagonals are known, then

Area of rhombus is given by A = 1/2*d₁*d₂,

But we know, A = 24

Hence, 1/2*d₁*d₂ = 24

1/2*8*d₂ = 24

d₂ = 6 cm.

Hence, length of the other diagonal of rhombus

is 6 cm.

Hope, it helps !

Answered by BrainlyFlash156
9

\huge\underbrace\mathfrak \red{ANSWER }

Area of rhombus = 24 cm²

Length of the other diagonal = 6 cm.

Step-by-step explanation:

Hi,

Given the side of the rhombus, b = 6 cm

Also, Given the altitude of rhombus , h = 4 cm,

Area of the rhombus when base(side) and altitude(h)

are given is given by A = base * height

Thus, Area of rhombus = 6 * 4  cm²

Area of rhombus = 24 cm².

Given one of the diagonal is of length  8 cm,

Let d₁ = 8 cm.

Let the length of the other diagonal be d₂.

If d₁, d₂ length of the diagonals are known, then

Area of rhombus is given by A = 1/2*d₁*d₂,

But we know, A = 24

Hence, 1/2*d₁*d₂ = 24

1/2*8*d₂ = 24

d₂ = 6 cm.

Hence, length of the other diagonal of rhombus

is 6 cm.

HOPE SO IT WILL HELP......

PLEASE MARK IT AS BRAINLIST.....

Similar questions