Math, asked by srijasarkar54, 5 months ago

find the area of a right angled triangle if it's base is 24 centimetre and perpendicular 7 centimetres​

Answers

Answered by Intelligentcat
71

Given :-

Base of the Triangle = 24 cm

Perpendicular = 7 cm

Have to find :-

Area of the Triangle = ?

Diagram :-

\setlength{\unitlength}{1cm}\begin{picture}(0,0)\linethickness{.4mm}\put(1,1){\line(1,0){4.5}}\put(1,1){\line(0,1){3.5}}\qbezier(1,4.5)(1,4.5)(5.5,1)\put(-1,2.5){\large\bf 7\ cm}\put(2.4,.3){\large\bf 24\ cm}\put(1.02,1.02){\framebox(0.3,0.3)}\end{picture}

Solution :-

Method - 1

As it is a right angle triangle

So,

The area of Triangle = ½ × Base × Height

As from given :-

Base ↬ 24

Height = Perpendicular ↬ 7

Putting up the values in the above formula :-

\longmapsto\tt{A=\dfrac{1}{{\cancel{2}}}\times{7}\times{{\cancel{24}}}}

\longmapsto\tt{A=7\times{12}}

\longmapsto\tt\bf{84\:{cm}^{2}}

_______________________

Method - 2

Let's find out the hypotenese .

We know the Pythagoras Theorem

(Hypotense)² = (Perpendicular)² + (Base)²

(Hypotense)² = (7)² + (24)²

(Hypotense)² = 49 + 576

(Hypotense)² = 625

(Hypotense) = √625

(Hypotense) = 25 cm.

We got

➤ a = 24 cm

➤ b = 7 cm

➤ c = 25 cm

Now,

Applying the Heron's Formula

 \bold{According \: to \: heron's \: formula} \\ \tt:  \implies  s  = \frac{a + b + c}{2}  \\  \\ \tt:  \implies  s  = \frac{24+ 7+ 25}{2}  \\  \\ \tt:  \implies  s  = \frac{56}{2}  \\  \\  \bf{\tt:  \implies  s  =28} \\  \\  \bold{For \: Area \: of \: triangle} \\  \tt:  \implies  Area \: of \: triangle = \sqrt{s(s - a)(s - b)(s - c)}  \\  \\ \tt:  \implies  Area \: of \: triangle = \sqrt{28(28- 25)(28 - 7)(28 - 24)}  \\  \\ \tt:  \implies  Area \: of \: triangle = \sqrt{28 \times 3 \times 21\times 4 }  \\  \\ \tt:  \implies  Area \: of \: triangle = \sqrt{1056}  \\  \\  \bf{\tt:  \implies  Area \: of \: triangle =  84  \: {cm}^{2} }

_______________________

Answered by Anonymous
1

\bf  {\underline {\underline{✤QƲЄƧƬƖƠƝ}}}

Find the area of a right angled triangle if it's base is 24 cm and perpendicular 7 cm.

\bf  {\underline {\underline{✤ ƛƝƧƜЄƦ}}}

➡Area of triangle is 84cm²

\bf  {\underline {\underline{✤ ƓƖƔЄƝ}}}

  • Perpendicular of triangle = 7cm
  • Base of triangle = 24cm

\bf  {\underline {\underline{✤ ƬƠ  \:  \:  ƇƛLƇƲLƛƬЄ}}}

  • Area of Triangle

\bf  {\underline {\underline{✤ ƑƠƦMƲLƛ  \:  \: ƬƠ  \: ƁЄ \:  \:  ƲƧЄƊ}}}

Pythagorous Theorem =

 \bf \orange{ {Hypotenuse}^{2}  =  {Base}^{2}  +  {Perpendicular}^{2} }

Heron's Formula =

 \bf \pink{ \sqrt{s(s  - a)(s - b)(s - c)} }

\bf  {\underline {\underline{✤ SƠԼƲƬƖƠƝ}}}

In this question, first we will find Third side using Pythagorous Theorem then area of Triangle by Heron's Formula.

 \sf \purple{Let's  \: start }

 \bf { {Hypotenuse}^{2}  =  {Base}^{2}  +  {Perpendicular}^{2} }

 \bf {\large\to} {Hypotenuse}^{2}  =  {24}^{2}  +  {7}^{2}

 \bf {\large\to} {Hypotenuse}^{2}  = 567 + 49

 \bf {\large\to} {Hypotenuse}^{2}  = 625

 \bf {\large\to} {Hypotenuse} =  \sqrt{625}

 \bf {\large\to} {Hypotenuse} = 25cm

Area of Triangle,

Let

a = 24cm

b = 7cm

c = 25cm

Semi perimeter (s)

= 24 + 7 + 25/ 2

= 56/2

= 28cm

 \bf { \sqrt{s(s  - a)(s - b)(s - c)} }

\bf  \sqrt{28(28 - 24)(28 - 7)(28 - 25)}

\bf  \sqrt{28 \times 4 \times 21 \times 3}

\bf  \sqrt{7056}

\bf 84 {cm}^{2}

Therefore, Area of triangle is 84cm².

 \bf \pink{hope \: } \purple{it \: } \blue{helps \: } \red{uh..}

Similar questions