Math, asked by shivambaghel006, 5 months ago

Find the area of a right triangle, in which the sides containing the right angle measure 20 cm
and 15 cm​

Answers

Answered by saksheesingh516
6

Answer:

25

Step-by-step explanation:

please

like

and

rate

Attachments:
Answered by somya2563
135

Step-by-step explanation:

\huge\sf\fbox\red{ \:  \:  \: Question  \:  \:  \: }  :: -

Find the area of a right triangle, in which the sides containing the right angle measure 20 cm and 15 cm

\huge\sf\fbox\purple{ \:  \:  \:  \:Given \:  \:  \: }  :: -

AB = C = 20cm

BC = A = 15cm

\huge\sf\fbox\blue{ \:  \:  \:  Required Solution \:  \:  \: }  :: -

\triangle \sf{ \:  ABC\: Right \:  angle \:  Triangle}

Useing Pythagoras Therom :

 \sf \: Perpendicula {r}^{2} + Bas {e}^{2}  = Hypotenus {e}^{2}

 \longrightarrow(20)^2 + (15 {)}^{2}  =   \sf Hypotenus  \\  \longrightarrow625 = \sf \: Hypotenus \\ \longrightarrow \sf \: 25cm  =   \sf \: Hypotenus

We know the 3rd side Hypotenuse = 25

 \sf \: Semi  \: Perimeter =  \cfrac{15+ \cancel \red{20}+25}{ \cancel \red2}  \\ \longrightarrow  \cfrac{\cancel \blue60}{\cancel \blue2} \\➡ \red{30}

Using Heron's Formula :

 \sf \: Area = \green{\sqrt{s(s - a)(s - b)(s - a)}}  \\  \longrightarrow \sqrt{30(30 - 15)(30 - 20)(30 - 25)} \\ \longrightarrow 30 + 5 + 15 + 10 \\  \longrightarrow15 \times 2 \times 5 \times 3 \times 5 \times 2 \times 5 \\➡ \sf \red{ 15 {cm}^{2}}

\sf\underline\bold{Know  \: More}:

\sf\underline \bold \pink{Formula \:  Used}: -

 \star\sf\underline \orange{Pythagoras \:  Therom :}

 \sf \: Perpendicula {r}^{2} + Bas {e}^{2}  = Hypotenus {e}^{2}

 \star  \sf\underline \orange{Semi  \: Perimeter :}

 \sf \cfrac{A + B + C }{2}

 \star\sf\underline \orange{ Heron's Formula }

 \sf Area = {\sqrt{s(s - a)(s - b)(s - a)}}

Hope it helpful...✌️

@Somya2563

Similar questions