Math, asked by lilypats54, 10 months ago

Find the area of a right triangle whise sides are 14cm, (x+6) cm and (x+8)using herons formula

Answers

Answered by Anonymous
24

Answer:

\begin{tabular}{|c |c | c|}\cline{1-3}\sf l/b &\sf b/l &\sf Hypotenuse \\\cline{1-3}\sf3 &\sf4 &\sf5 \\\sf5 &\sf12 &\sf13\\\sf7 &\sf24&\sf25 \\\sf8 &\sf15&\sf17\\\cline{1-3}\end{tabular}

If it's a Right Angle Triangle, then it will must follow Pythagorean Triplet so by observing ; we can see that it will Follow Twice of [ 7, 24, 25 ] i.e. ( 14, 48, 50 )

  • 14 cm
  • x + 6 = 48 cm
  • x + 8 = 50 cm

Value of x in the sides will be 42.

\setlength{\unitlength}{1.5cm}\begin{picture}(6,2)\linethickness{0.4mm}\put(7.7,2.9){\large\sf{A}}\put(7.7,1){\large\sf{B}}\put(10.6,1){\large\sf{C}}\put(8,1){\line(1,0){2.5}}\put(8,1){\line(0,2){1.9}}\qbezier(10.5,1)(10,1.4)(8,2.9)\put(7.2,2){\sf{\large{48 cm}}}\put(8.8,0.7){\sf{\large{14 cm}}}\put(9.4,1.9){\sf{\large{50 cm}}}\put(8.2,1){\line(0,1){0.2}}\put(8,1.2){\line(3,0){0.2}}\end{picture}

⠀⠀⠀\rule{160}{0.8}

\underline{\textsf{Semi - Perimeter of the Triangle :}}

:\implies\sf Semi \:Perimeter=\dfrac{Sum\:of\:Sides}{2}\\\\\\:\implies\sf s = \dfrac{a + b + c}{2}\\\\\\:\implies\sf s = \dfrac{14 + 50 + 48}{2}\\\\\\:\implies\sf s = \dfrac{112}{2}\\\\\\:\implies\sf s =56

\rule{180}{1.5}

\underline{\textsf{Area of the Right Angle Triangle :}}

\dashrightarrow\sf\:\:Area=\sqrt{s(s-a)(s-b)(s-c)}\\\\\\\dashrightarrow\sf\:\:Area=\sqrt{56(56-14)(56-50)(56-48)}\\\\\\\dashrightarrow\sf\:\:Area = \sqrt{56 \times 42 \times 6 \times 8}\\\\\\\dashrightarrow\sf\:\:Area = \sqrt{8 \times 7 \times 7 \times 6 \times 6 \times 8}\\\\\\\dashrightarrow\sf\:\:Area = 8 \times 7 \times 6\\\\\\\dashrightarrow\sf\:\:Area = 336 \:{cm}^{2}

\therefore\:\underline{\textsf{Hence, Area of the given Triangle is \textbf{336 cm$^\text2$}}}.

Answered by InfiniteSoul
5

\sf{\huge{\mathfrak{\orange{\underline{Question}}}}}

  • Find the area of a right triangle whise sides are 14cm, (x+6) cm and (x+8)using herons formula

\sf{\huge{\mathfrak{\orange{\underline{solution}}}}}

\setlength{\unitlength}{1.5cm}\begin{picture}(6,2)\linethickness{0.4mm}\put(7.7,2.9){\large\sf{A}}\put(7.7,1){\large\sf{B}}\put(10.6,1){\large\sf{C}}\put(8,1){\line(1,0){2.5}}\put(8,1){\line(0,2){1.9}}\qbezier(10.5,1)(10,1.4)(8,2.9)\put(7.2,2){\sf{\large{x + 6 cm}}}\put(8.8,0.7){\sf{\large{14 cm}}}\put(9.4,1.9){\sf{\large{x + 8 cm}}}\put(8.2,1){\line(0,1){0.2}}\put(8,1.2){\line(3,0){0.2}}\end{picture}

\sf{\bold{\green{\underline{\underline{Given}}}}}

  • Triangle is a right angle triangle .
  • sides are 14cm , x + 6 , x + 8 .

\sf{\bold{\blue{\underline{\underline{To\:find}}}}}

  • area using herons formulae .

\sf{\bold{\purple{\underline{\underline{Explanation}}}}}

  • triangle is a right angle triangle therefore verifies Pythagoras theorem .

\sf{\bold{\red{\boxed{AC^2 = AB^2 + BC^2}}}}

\sf (x + 8)^2 = (x + 6)^2 + 14^2

\sf x^2 + 64 + 16x = x^2 + 36 + 12x + 196

\sf x^2 - x^2 + 16 x - 12x = 36 + 196 - 64

\sf 4x = 168

\sf x = \dfrac{168}{4}

\sf{\bold{\pink{\underline{\underline{x = 42cm}}}}}

  • putting value of x in sides of triangle

x + 6 = 42 + 6 = 48 cm

x + 8 = 42 + 8 = 50cm

  • Herons formulae :-

\sf{\bold{\red{\boxed{semi \:perimeter =\dfrac{ AB + BC + CA }{2}}}}}

\sf {semi\: perimeter = \dfrac{14 + 48 + 50 }{2}}

\sf{semi\: perimeter = \dfrac{112}{2}}

\sf{semi\: perimeter = 56cm}

\sf{\bold{\pink{\underline{\underline{semi\:perimeter = 56cm}}}}}

 \\ \\

\sf{\bold{\red{\boxed{area = \sqrt{s(s-a)(s-b)(s-c)}}}}}

\sf\:\:Area=\sqrt{56(56-14)(56-50)(56-48)}

\sf\:\:Area = \sqrt{56 \times 42 \times 6 \times 8}

\sf\:\:Area = \sqrt{8 \times 7 \times 7 \times 6 \times 6 \times 8}.

\sf\:\:Area = 8 \times 7 \times 6

\sf\:\:Area = 336 \:{cm}^{2}

\sf{\bold{\pink{\underline{\underline{Area = 336cm^2}}}}}

__________________❤

Similar questions