Math, asked by Anonymous, 5 months ago

Find the area of a right triangle with hypotenuse 10 cm and base 6cm.​

Answers

Answered by Rudranil420
86

Answer:

Solution :-

By using Pythagoras theorem

\tt \red{ {CB}^{2} = {AB}^{2} + {AC}^{2}}

AB = 6 cm

CB = 10 cm

AC = ?

\tt{ ={CB}^{2} = {AB}^{2} + {AC}^{2}}

\tt {= {10}^{2} = {6}^{2} + {AC}^{2}}

\tt{= 100 = 36 + {AC}^{2} }

\tt {= {AC}^{2} = 100 - 36 }

\tt {= {AC}^{2} = 64}

\tt {= AC = \sqrt{64}}

\tt {= AC = 8 }

Area of triangle = \tt { \frac{1}{2} × Base × height }

\tt {= \frac{1}{2} × 6 × 8}

\tt {= \frac {48}{2}}

\tt {= {24cm}^{2}}


harshita19pandey: hey
harshita19pandey: dude
harshita19pandey: ib kro
harshita19pandey: mujhe
harshita19pandey: kuchh puchhna haj
harshita19pandey: hai* tumse
Answered by AestheticSky
7

Given:-

  • hypotenuse of the triangle = 10cm
  • base of the triangle = 6cm

To find:-

  • Area of this triangle

Formula to be used:-

Pythagoras theorem:-

\underline{\boxed{\bf H² = B²+P²}}

here,

  • h = hypotenues
  • b = base
  • p = perpendicular

\underline{\boxed{\bf area\: of triangle = \dfrac{1}{2}×base × height}}

Solution:-

Let's find the value of height by Pythagoras theorem:-

\longrightarrow 10² = 6² + P²

\longrightarrow 100 = 36 + P²

\longrightarrow P² = 64

\longrightarrow P = √64

\longrightarrow P = 8cm

Let's find the area of the triangle now,

\longrightarrow Area = \sf\dfrac{1}{2} × 6 × 8

\longrightarrow Area = 3 × 8

\longrightarrow Area = 24cm²


vaibhavvaibhav1662: good
vaibhavvaibhav1662: hello
vaibhavvaibhav1662: Mrs.
Similar questions