Math, asked by CuteCutest, 5 months ago

Find the area of a right triangle with hypotenuse 10 cm and base 6cm.​

Answers

Answered by Anonymous
21

Answer:

Solution..

by using Pythagoras theorem

\tt \pink{ {CB}^{2} = {AB}^{2} + {AC}^{2}}

AB = 6 cm

CB = 10 cm

AC = ?

\tt{ ={CB}^{2} = {AB}^{2} + {AC}^{2}}

\tt {= {10}^{2} = {6}^{2} + {AC}^{2}}

\tt{= 100 = 36 + {AC}^{2} }

\tt {= {AC}^{2} = 100 - 36 }

\tt {= {AC}^{2} = 64}

\tt {= AC = \sqrt{64}}

\tt {= AC = 8 }

Area of triangle = \tt { \frac{1}{2} × Base × height }

\tt {= \frac{1}{2} × 6 × 8}

\tt {= \frac {48}{2}}

\tt {= {24cm}^{2}}

Answered by RevolutionGundi
29

Solution..

by using Pythagoras theorem

\tt \pink{ {CB}^{2} = {AB}^{2} + {AC}^{2}}

AB = 6 cm

CB = 10 cm

AC = ?

\tt{ ={CB}^{2} = {AB}^{2} + {AC}^{2}}

\tt {= {10}^{2} = {6}^{2} + {AC}^{2}}

\tt{= 100 = 36 + {AC}^{2} }

\tt {= {AC}^{2} = 100 - 36 }

\tt {= {AC}^{2} = 64}

\tt {= AC = \sqrt{64}}

\tt {= AC = 8 }

Area of triangle = \tt { \frac{1}{2} × Base × height }

\tt {= \frac{1}{2} × 6 × 8}

\tt {= \frac {48}{2}}

\tt {= {24cm}^{2}}


RevolutionGundi: NYC
RevolutionGundi: sure yrr
rudrakshsingh9: ??
rudrakshsingh9: okk
rudrakshsingh9: snap per request bheju
RevolutionGundi: haan
rudrakshsingh9: abhi bheaj raha hu
RevolutionGundi: haan
RevolutionGundi: bhejo
rudrakshsingh9: bheaj diya
Similar questions