find the area of a sector of a circle with diameter 28m and the angle of the sector is 60
Answers
Answer:
The area of the sector of the circle is 102.67 m² ( Approx. ).
Step-by-step-explanation:
We have given that,
Diameter of circle = 28 m
Central angle of circle
We have to find the area of the sector of the circle.
Now, we know that,
Answer:
area of the sector of the circle is 102.67 m² ( Approx. ).
Step-by-step-explanation:
We have given that,
Diameter of circle = 28 m
Central angle of circle \sf\:(\:\theta\:)\:=\:60^{\circ}(θ)=60
∘
We have to find the area of the sector of the circle.
Now, we know that,
\displaystyle{\pink{\sf\:Area\:of\:sector\:=\:\dfrac{\theta}{360}\:\times\:\pi\:r^2}\sf\:\:\:-\:-\:[\:Formula\:]}Areaofsector=
360
θ
×πr
2
−−[Formula]
\displaystyle{\implies\sf\:Area\:of\:sector\:=\:\dfrac{\theta}{360}\:\times\:\pi\:\times\:(\:\dfrac{d}{2}\:)^2\:\:\:-\:-\:[\:\because\:r\:=\:\dfrac{d}{2}\:]}⟹Areaofsector=
360
θ
×π×(
2
d
)
2
−−[∵r=
2
d
]
\displaystyle{\implies\sf\:Area\:of\:sector\:=\:\cancel{\dfrac{60}{360}}\:\times\:\dfrac{22}{7}\:\times\:(\:\dfrac{28}{2}\:)^2}⟹Areaofsector=
360
60
×
7
22
×(
2
28
)
2
\displaystyle{\implies\sf\:Area\:of\:sector\:=\:\dfrac{1}{6}\:\times\:\dfrac{22}{\cancel{7}}\:\times\:\dfrac{\cancel{28}}{2}\:\times\:\dfrac{28}{2}}⟹Areaofsector=
6
1
×
7
22
×
2
28
×
2
28
\displaystyle{\implies\sf\:Area\:of\:sector\:=\:\dfrac{1}{6}\:\times\:22\:\times\:\cancel{\dfrac{4}{2}}\:\times\:\dfrac{28}{2}}⟹Areaofsector=
6
1
×22×
2
4
×
2
28
\displaystyle{\implies\sf\:Area\:of\:sector\:=\:\dfrac{1}{6}\:\times\:22\:\times\:2\:\times\:\cancel{\dfrac{28}{2}}}⟹Areaofsector=
6
1
×22×2×
2
28
\displaystyle{\implies\sf\:Area\:of\:sector\:=\:\dfrac{1}{6}\:\times\:22\:\times\:2\:\times\:14}⟹Areaofsector=
6
1
×22×2×14
\displaystyle{\implies\sf\:Area\:of\:sector\:=\:\dfrac{22\:\times\:\cancel{2}\:\times\:14}{\cancel{6}}}⟹Areaofsector=
6
22×
2
×14
\displaystyle{\implies\sf\:Area\:of\:sector\:=\:\dfrac{22\:\times\:14}{3}}⟹Areaofsector=
3
22×14
\displaystyle{\implies\sf\:Area\:of\:sector\:=\:\cancel{\dfrac{308}{3}}}⟹Areaofsector=
3
308
\displaystyle{\implies\sf\:Area\:of\:sector\:=\:102.666}⟹Areaofsector=102.666
\displaystyle{\implies\boxed{\red{\sf\:Area\:of\:sector\:\approx\:102.67\:m^2}}}⟹
Areaofsector≈102.67m
2