Math, asked by ugxugxifhiyfihcjgc, 3 months ago

.Find the area of a square, if the measure of its each diagonal is 12 cm.​

Answers

Answered by Anonymous
28

Given :

Length of diagonal of a square = 12 cm

To Find :

The area of the square

Solution :

The relation between the diagonal and side of a square is given by ,

 \\  \star \: {\boxed{\purple{\sf{Diagonal_{(square)} =  \sqrt{2}  \times side_{(square)}}}}} \\  \\

We have ,

Diagonal of square as 12 cm

 \\  \dag{\underline{\mathfrak{Substituting \: the \: values \:, }}} \\

 \\  :  \implies \sf \: 12 \: cm =  \sqrt{2} \times side_{(square)}  \\  \\

 \\   : \implies \sf \: side_{(square)} =  \frac{12}{ \sqrt{2} }  \\  \\

 \\ :   \implies \sf \: side_{(square)} =  \frac{12 \times  \sqrt{2} }{ \sqrt{2}  \times  \sqrt{2} }  \\  \\

 \\  :  \implies \sf \: side_{(square)} =  \frac{12 \times  \sqrt{2} }{2}  \\  \\

 \\    :  \implies{\underline{\boxed{\red{\mathfrak{side_{(square)} = 6 \sqrt{2}  \: cm}}}}} \\  \\

\qquad━━━━━━━━━━━━━━━━

Area of a square is given by ,

 \\  \star \: {\boxed{\purple{\sf{area_{(square)} =  [{side_{(square)}}]^{2} }}}} \\

We have ,

Side of the square as 6\sf{\sqrt{2}} cm

 \\  \dag{\underline{\mathfrak{Substituting \: the \: values \:, }}} \\  \\

 \\   : \implies \sf \: area_{(square)} =  {(6 \sqrt{2} )}^{2}  \\  \\

 \\   : \implies{\underline{\boxed{\pink {\mathfrak{area_{(square)} = 72 \:  {cm}^{2} }}}}} \:  \bigstar \\  \\

 \\   \therefore{\underline{\sf{Hence ,  \: The  \: area  \: of  \: the  \: given \:  square \:  is  \:  \bold{72 cm^2}}}}

Answered by sharma00049
0

Answer:

ok

Step-by-step explanation:

so corrrect ans is A=72

hope you got it

makr me brainlist

Similar questions