Math, asked by enagandulapradyun, 1 day ago

Find the area of a square of side 21m.​

Answers

Answered by Teluguwala
20

Given :-

  • Side of a square is 21 m

To Find :-

  • What is the area of a square

Formula Used :-

♣️ Area Of Square :

  \bigstar \: \color{magenta}{ \boxed{ \bf Area _{(Square)}  \:  = \:  Side \times Side}} \color{black}  \: \bigstar

Solution :-

Given :

  • Side of a Square = 21 m

According to the question by using formula we get,

  \implies \: \bf Area _{(Square)}  \:  = \:  Side \times Side

 \implies \: \sf Area _{(Square)}  \:  = \:  21 \: m\times 21 \: m

\implies \: \bf  \red{Area _{(Square)}  \:  = \:   {441 \: m}^{2} }

Hence, The area of a square is 441 m² .

 \:

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Answered by TheAestheticBoy
22

Question :-

  • Find the Area of a Square, whose side is 21 meter .

Answer :-

  • Area of Square is 441 m² .

 \rule {195pt}{2pt}

Given :-

  • Side of Square = 21 meter

To Find :-

  • Area of Square = ?

Solution :-

As per the provided information in the given question, Side of a Square is given 21 meter . And, we have been asked to calculate the Area of a Square .

For calculating the Area, we will use Area of Square formula :-

  •  \bf{Area \: of \: Square =  ({side})^{2} }  \\

Therefore, by substituting the given values in the above Formula :-

 \dag \:  \:  \sf{ Area \: _{Square} \: =  \:({side})^{2} }  \\

 \Longrightarrow \:  \:  \sf{Area \: _{Square}  \: =  \:  {(21)}^{2} } \\

 \Longrightarrow \:  \:  \sf{Area \: _{Square} \:  =  \: 21 \:  \times  \: 21} \\

 \Longrightarrow \:  \:  \bf {Area \: _{Square} \:  =  \: 441} \\

Hence :-

  • Area = 441 m²

 \rule {195pt}{4pt}

 \begin{gathered}\begin{gathered}\boxed{\begin{array}{c} \\ \underline{ { \textbf {\textsf \red{ \dag \:  \: More \: Formulas \:  \:  \dag}}}} \\  \\  \\  \footnotesize \bigstar  \:  \bf{Area \: _{Square} = Side \times Side}  \\  \\  \\   \footnotesize\bigstar  \:  \bf{Area \: _{Rectangle} = Lenght \times Breadth} \\  \\  \\  \footnotesize \bigstar \:  \bf{Area \: _{Triangle} =  \frac{1}{2} \times Base \times Height } \\  \\  \\  \footnotesize \bigstar \:  \bf{Area \: _{Parallelogram} = Base \times Height} \\  \\  \\  \footnotesize \bigstar \:  \bf{Area \: _{Trapezium} =  \frac{1}{2} \times [ \: A + B \: ] \times Height } \\ \\ \\ \footnotesize \bigstar \: \bf {Area \: _{Rhombus} = \frac{1}{2} \times Diagonal \: 1 \times Diagonal \: 2}\end{array}}\end{gathered}\end{gathered}

Attachments:
Similar questions