Math, asked by rajendraskb03, 1 day ago

Find the area of a square park whose perimeter is 320m.​

Answers

Answered by akshitaskb09
1

Perimeter of square park = 320m

Area of square park = ?

Side of square park = ?

Perimeter of square = 4 × side

320m = 4 × side

320/4 = side

80m = side

Area of square = side × side

= 80 × 80

= 6400m²

Answered by TheAestheticBoy
36

\underline {\textbf {\textsf{Question :-}}}

  • Find the Area of a square park, whose Perimeter is 320 meter .

\underline{ \textbf { \textsf{Answer :-}}}

  • Area of Square is 6400 m² .

\rule{191pt}{2pt}

Given :-

  • Perimeter of Park = 320 m .

To Find :-

  • Area of Square = ?

Solution :-

  • As per the given question, it is provided that, Perimeter of Park is 320 m . And we have to calculate the Area of Square .

Formula Required :-

  •  \sf{ Perimeter \: of \: Square = 4 \times side}
  •  \sf{Area \: of \: Square = (side)^{2} }

First, we will find Side of Square :-

\dag \:  \:  \bf{Perimeter \: _{Square} = 4 \times side}

\Longrightarrow \:  \:  \sf{320 \:  = \:  4  \: \times \: side }

\Longrightarrow \:  \: \sf{side \:  =  \:  \frac{320}{4} } \\

\Longrightarrow  \:  \:  \bf{side \:  =  \: 80 \: m}

Now, let's find Area of Square :-

\dag \:  \:  \bf{Area \: _{Square} \:  = \:  (side)^{2} }

\Longrightarrow \:  \:  \sf{Area \:_{Square} \:  =  \: (80)^{2} }

\Longrightarrow \:  \:  \sf{Area \: _{Square} \: = \: 80 \:  \times \:  80}

\Longrightarrow \:  \:  \bf{Area \: _{Square} \:  =  \:   {6400 \: m}^{2}  }

Hence :-

  • Area of Square = 6400 m² .

\rule{191pt}{4pt}

\begin{gathered}\begin{gathered}\boxed{\begin{array}{c} \\ \underline{ { \textbf {\textsf \red{ \dag \:  \: More \: Formulas \:  \:  \dag}}}} \\  \\  \\  \footnotesize \bigstar  \:  \sf{Area \: of \: Square = Side \times Side}  \\  \\  \\   \footnotesize\bigstar  \:  \sf{Area \: of \: Rectangle = Lenght \times Breadth} \\  \\  \\  \footnotesize \bigstar \:  \sf{Area \: of \: Triangle =  \frac{1}{2} \times Base \times Height } \\  \\  \\  \footnotesize \bigstar \:  \sf{Area \: of \: Parallelogram = Base \times Height} \\  \\  \\  \footnotesize \bigstar \:  \sf{Area \: of \: Trapezium =  \frac{1}{2} \times [ \: A + B \: ] \times Height } \\ \\ \\ \footnotesize \bigstar \: \sf {Area \: of \: Rhombus = \frac{1}{2} \times Diagonal \: 1 \times Diagonal \: 2}\end{array}}\end{gathered}\end{gathered}

Similar questions