Math, asked by dd964241, 1 month ago

Find the area of a the triangle whose sides are 10 cm, 10 cm and 8 cm using Hero’s formula.​

Answers

Answered by himanshukumar57713
0

Answer:

A SIDE =10 CM B= BASE =10 CM C = SIDE = 8CM

Step-by-step explanation:

A=s(s-a )(s-b) (s-c) s=a+b+c_2 A1_ 4_ a4 +2(ab)+2 (ac)2_b4 1_4 -10 4 +2 (10.10)2 + 2.(10) ans is = 36.66061

Answered by mathdude500
13

\large\underline{\sf{Solution-}}

Given that sides of a triangle are 10 cm, 10 cm and 8 cm respectively.

Let assume that sides of triangle be represented as

↝ a = 10 cm

↝ b = 10 cm

↝ c = 8 cm

We know,

\underline{\boxed{\sf \:  \:  Semi \ perimeter, \: s \: = \: \dfrac{a + b + c}{2} \:  \: }}

So,

\rm :\longmapsto\:s = \dfrac{10 + 10 + 8}{2}

\rm :\longmapsto\:s = \dfrac{28}{2}

\rm \implies\:\boxed{ \tt{ \: s \:  =  \: 14 \: cm \:  \: }}

We know, By Heron's Formula

\underline{\boxed{\sf Area \ of \ triangle=\sqrt{s(s-a)(s-b)(s-c)} }}

So, on substituting the values, we get

\rm :\longmapsto\:Area \: of \:  \triangle \:  =  \sqrt{14(14 - 10)(14 - 10)(14 - 8)}

\rm :\longmapsto\:Area \: of \:  \triangle \:  =  \sqrt{14(4)(4)(6)}

\rm :\longmapsto\:Area \: of \:  \triangle \:  =  \sqrt{7 \times 2 \times 4 \times 4 \times 2 \times 3}

\rm :\longmapsto\:Area \: of \:  \triangle \:  =  2 \times 4\sqrt{7 \times 3}

\rm :\longmapsto\:Area \: of \:  \triangle \:  =  8 \sqrt{21}  \:  {cm}^{2}

Hence,

\rm :\longmapsto\:\boxed{ \tt{  \: \: Area \: of \:  \triangle \:  =  8 \sqrt{21}  \:  {cm}^{2}  \:  \: }}

Similar questions