Math, asked by kv2980803, 1 year ago

find the area of a tin sheet requieded to make a cylinder container with its lid if its radius of the base is 21cm and hight 28cm also find the volme od yhe container​

Attachments:

Answers

Answered by Anonymous
5

\huge\bigstar\huge\mathcal{\underline{ \underline{QUESTION}}}\red\bigstar

Find the area of a tin sheet requieded to make a cylinder container with its lid if its radius of the base is 21cm and hight 28cm also find the volme od yhe container.

&lt;!DOCTYPE html&gt;</p><p>&lt;html&gt;</p><p>  &lt;head&gt;</p><p>    &lt;title&gt;Title of the document&lt;/title&gt;</p><p>    &lt;style&gt;</p><p>    #blink{</p><p>      font-size: 30px;</p><p>      font-weight: bold;</p><p>      font-family: sans-serif;</p><p>      color:#CC0000 ;</p><p>      transition:0.4s;</p><p>    }</p><p>   &lt;/style&gt;</p><p>  &lt;/head&gt;</p><p>  &lt;body&gt;</p><p>     &lt;p id="blink"&gt;  ........ Solution........&lt;/p&gt;</p><p>    &lt;script type="text/javascript"&gt;</p><p>      var blink = document.getElementById('blink');</p><p>      setInterval(function() {</p><p>         blink.style.opacity = (blink.style.opacity == 0 ? 1 : 0);</p><p>      }, 1000); </p><p>    &lt;/script&gt;</p><p>  &lt;/body&gt;</p><p>&lt;/html&gt;

\boxed{}\\  \\

given

height (h)of the cylinder=28 cm

radius (r)of base =21 cm

now to find ,

the area of a tin sheet requieded to make a cylinder container with its lid .

therefore we have to calculate its total surface area . i.e ,

A_{total}=A_{T.S.A}+A_{base}

 \implies A_{total}=A_{T.S.A}+A_{base}  \\  \implies A_{total} = 2\pi rh + 2\pi r {}^{2}  \\   \implies  \boxed{A_{total} = 2\pi r(r + h)}

therefore area of the total surface area

=2πr(r+h)

 = 2 \times  \frac{22}{ \cancel 7}  \times  \cancel{21} \times (21 + 28) \: cm {}^{2}  \\  =( 2 \times 22 \times 3 \times 49) \: cm {}^{2}  \\  = </u></strong><strong><u>\</u></strong><strong><u>l</u></strong><strong><u>a</u></strong><strong><u>r</u></strong><strong><u>g</u></strong><strong><u>e</u></strong><strong><u>\</u></strong><strong><u>r</u></strong><strong><u>e</u></strong><strong><u>d</u></strong><strong><u>{</u></strong><strong><u>6468</u></strong><strong><u>}</u></strong><strong><u> \: cm {}^{2}

therefore area of the tin sheet is 6468 cm²

now volume of the cylinder is

=(base area × height)

=πr²×h

 =  \frac{22}{7}  \times (21) {}^{2} \times 28 \: cm {}^{3}   \\  =  \frac{22}{ \cancel7}  \times  \cancel{21} \times 21 \times 28 \: cm {}^{3}  \\  = 22 \times 3 \times 21 \times 28 \: cm {}^{3}  \\  = </u></strong><strong><u>\</u></strong><strong><u>l</u></strong><strong><u>a</u></strong><strong><u>r</u></strong><strong><u>g</u></strong><strong><u>e</u></strong><strong><u>\</u></strong><strong><u>r</u></strong><strong><u>e</u></strong><strong><u>d</u></strong><strong><u>{</u></strong><strong><u>38808</u></strong><strong><u>}</u></strong><strong><u> \: cm {}^{</u></strong><strong><u>3</u></strong><strong><u>}

\large\mathfrak{...hope\: this \:helps\: you.....}

#answerwithquality & #BAL

Answered by RvChaudharY50
129

\begin{lgathered}  \red{\bf{Given}}\begin{cases}\underline{\footnotesize\sf{\star\:\:Dimensions\:of \: cylinder}}\\\sf{radius(r)=21cm }\\\sf{Height(h)=28cm}\\ \sf{\footnotesize\bf{Find\:area\:of\:tinn\:sheet\:used\:and\:volume\:of\:container}}</p><p>\end{cases}\end{lgathered}

\Large\bold\star\underline{\underline\textbf{Formula\:used}}

  • Area of tin sheet required is basically the curved surface area of cylinder + Area of both bases ,that means 2πrh + 2πr² or 2πr(h+r)
  • Volume of cylinder is = πr²h
  • Take π as = 22/7

________________________

\underline {\underline{\LARGE{{\bf{\green{S}}}{\mathfrak{o}}{\mathfrak{\orange{l}}}{\mathfrak{\red{u}}}{\mathfrak{\pink{t}}}{\mathfrak{\purple{i}}}{\mathfrak{\blue{o}}}{\mathfrak{\red{n}}}}}} : \:

Putting all values in Above formula now we get :----

Area of Tin sheet Required to make cylinder = 2πr(h+r)

putting values :-----

\red\longrightarrow \: 2 \times  \frac{22}{7}  \times 21(21 + 28) \\  \\ \red\longrightarrow \: 2 \times 22 \times 3 \times 49 \\  \\ \red\longrightarrow \: \pink{\large\boxed{\boxed{\bold{6468 {cm}^{2} }}}} \:

______________________________

Now putting again values in Volume formula = πr²h ,

we get :-------

\red\leadsto \:  \frac{22}{7}  \times 21 \times 21 \times 28 \\  \\ \red\leadsto \: 22 \times 3 \times21 \times 28 \\  \\ \red\leadsto \: \bold{\boxed{\large{\boxed{\orange{\small{\boxed{\huge{\red{\bold{\:38808 {cm}^{3} }}}}}}}}}}

___________________________

\large\bold\star\underline\mathcal{Extra\:Brainly\:Knowledge:-}

→ CSA(curved surface Area of cylinder = 2πrh

→ Volume of cone = 1/3 of Volume of cylinder

→ CSA of cone = πrl (where l = slant height)

→ slant height of cone = √(r²+h²)

→ TSA of cone = πrl + πr²

__________________________

\large\underline\textbf{Hope it Helps You.}

#BAL

Similar questions