Math, asked by ramsumer11r244, 6 months ago

find the area of a trangle whose perimeter is 24 and two sides are 6m and 8m.

Answers

Answered by janala
1

Answer:

40 cm^2

Step-by-step explanation:

area=1/2*b*h

perimeter= a+b+c sides

                 6+8+x=24

                         x=24-(6+8)

                         x=24-14

                       x=10

area=1/2*8*10

       =40 cm^2

Answered by Anonymous
1

GIVEN

A triangle whose perimeter is 24 and two sides are 6m and 8m.

To Find

The area.

SOLUTION

We know that,

All sides of a triangle sum up to its perimeter.

Therefore,

  • Perimeter = 24 m.
  • Two sides are:- 6 m and 8 m.
  • Let the other side be x.

SOLUTION

\large\implies{\sf{6+8+x=24}}

\large\implies{\sf{14+x=24}}

\large\implies{\sf{x=24-14}}

\large\therefore\boxed{\bf{x=10.}}

The third side is 10 m.

Now the area

We have to find the semiperimeter.

\large\implies{\sf{Semiperimeter=\dfrac{Perimeter}{2}}}

\large\implies{\sf{Semiperimeter=\dfrac{24}{2}}}

\large\implies{\sf{Semiperimeter=\dfrac{\cancel{24}}{\cancel{2}}}}

\large\therefore\boxed{\bf{Semiperimeter=12\:m.}}

Now by Heron's Formula,

\large{\green{\underline{\boxed{\bf{Area=\sqrt{s(s-a)(s-b)(s-c)}}}}}}

where,

  • s is the semiperimeter = 12 m.
  • a is first side = 6 m.
  • b is the second side = 8 m.
  • c is the third side = 10 m.

Putting the values,

\large\implies{\sf{Area=\sqrt{12(12-6)(12-8)(12-10)}}}

\large\implies{\sf{Area=\sqrt{12\times6\times4\times2}}}

\large\implies{\sf{Area=\sqrt{576}}}

\large\implies{\sf{Area=24\:m^2.}}

So, the area of the triangle is 24 m².

Similar questions