Math, asked by at3205775, 3 months ago

find the area of a trapezium if lengths of the two parallel sides are 8.5cm and 11.5cm respectively and its height is 6.2cm​

Answers

Answered by CopyThat
38

Answer:

  • 62 cm²

Step-by-step explanation:

Given

  • Two parallel sides of trapezium :
  1. 8.5 cm
  2. 11.5 cm
  • Height of trapezium = 6.2 cm

To find

  • Area of trapezium

Solution

Area of trapezium = a + b / 2 × h

Where :

  • a - parallel side 1
  • b - parallel side 2
  • h - height

Substituting we get :

  • (8.5 + 11.5/2) × 6.2
  • (20/2) × 6.2
  • (10) × 6.2
  • 62

Hence, the area of trapezium is 62 cm².

Answered by Anonymous
207

Answer:

\large{\underline{\underline{\textbf{Given}}}}

  • ~The lengths of two parallel sides of trapezium are 8.5cm and 11.5cm
  • ~The height of Trapezium is 6.2 cm

\large{\underline{\underline{\textbf{To\:Find }}}}

  • ~Area of Trapezium

\large{\underline{\underline{\textbf{Using Formula}}}}

\circ\underline{ \boxed{\sf{ \dfrac{1}{2} \times  (sum \:  of  \: parallel \:  sides) × h}}}

\large{\underline{\underline{\textbf{Solution}}}}

{  : \implies \sf{ \dfrac{1}{2} \times  (sum \:  of  \: parallel \:  sides) × h}}

\begin{gathered} \\ \end{gathered}

  • Substituting the values

\begin{gathered} \\ \end{gathered}

{  : \implies \sf{ \dfrac{1}{2} \times  (8.5 +  11.5)× 6.2}}

\begin{gathered} \\ \end{gathered}

{  : \implies \sf{ \dfrac{20}{2} × 6.2}}

\begin{gathered} \\ \end{gathered}

{  : \implies \sf{ \cancel\dfrac{20}{2} × 6.2}}

\begin{gathered} \\ \end{gathered}

{  : \implies \sf{ 10× 6.2}}

\begin{gathered} \\ \end{gathered}

{ :\implies\bf{ 62 \:  {cm}^{2}}}

\begin{gathered} \\ \end{gathered}

\begin{gathered}  \large \purple\bigstar\underline{ \boxed {\sf \pink{\pmb {62 \:  {cm}^{2}}}}} \end{gathered}

  • ~Henceforth,The Area of Trapezium is 62 cm².

\begin{gathered} \\ \end{gathered}

\large{\underline{\underline{\textbf{Know\: More}}}}

  • ➟ Volume of cylinder = πr²h
  • ➟ T.S.A of cylinder = 2πrh + 2πr²
  • ➟ Volume of cone = ⅓ πr²h
  • ➟ C.S.A of cone = πrl
  • ➟ T.S.A of cone = πrl + πr²
  • ➟ Volume of cuboid = l × b × h
  • ➟ C.S.A of cuboid = 2(l + b)h
  • ➟ T.S.A of cuboid = 2(lb + bh + lh)
  • ➟ C.S.A of cube = 4a²
  • ➟ T.S.A of cube = 6a²
  • ➟ Volume of cube = a³
  • ➟ Volume of sphere = (4/3)πr³
  • ➟ Surface area of sphere = 4πr²
  • ➟ Volume of hemisphere = ⅔ πr³
  • ➟ C.S.A of hemisphere = 2πr²
  • ➟ T.S.A of hemisphere = 3πr²
Similar questions