Math, asked by mohammadusmananwer19, 6 days ago

find the area of a trapezium if the length of it's two bases is 8.8 m and 12.9 m respectively and the prependicular distance between two bases is 12 m.​

Answers

Answered by sethrollins13
44

Given :

  • Length of two bases/parallel sides is 8.8 m and 12.9 m .
  • Height is 12 m .

To Find :

  • Area of Trapezium .

Solution :

\longmapsto\tt{Parallel\:sides=8.8\:m\:and\:12.9\:m}

\longmapsto\tt{Height=12\:m}

Using Formula :

\longmapsto\tt\boxed{Area\:of\:Trapezium=\dfrac{1}{2}\times{(Sum\:of\:parallel\:sides)}\times{h}}

Putting Values :

\longmapsto\tt{\dfrac{1}{{\cancel{2}}}\times{(8.8+12.9)}\times{{\cancel{12}}}}

\longmapsto\tt{21.7\times{6}}

\longmapsto\tt\bf{130.2\:{cm}^{2}}

So , The Area of Trapezium is 130.2 cm² .

Answered by Anonymous
86

Given : Length of the two parallel sides of Trapezium are 8.8 m and 12.9 m . Perpendicular distance between the two bases is 12 cm .

 \\ \\

To Find : Find the Area of Trapezium

 \\ \qquad{\rule{200pt}{3pt}}

SolutioN : For finding the area of this Trapezium we need to apply the formula first . Let's Solve :

 \\ \\

 \maltese Formula Used :

  •  {\underline{\boxed{\pmb{\sf{ Area{\small_{(Trapezium)}} = \dfrac{1}{2} \times \bigg( a + b \bigg) \times Height }}}}}

Where :

  • a = First Parallel Side
  • b = Second Parallel Side

 \\ \\

 \maltese Calculating the Area :

 {\dashrightarrow{\qquad{\sf{ Area = \dfrac{1}{2} \times \bigg( a + b \bigg) \times Height }}}} \\ \\ \\ \ {\dashrightarrow{\qquad{\sf{ Area = \dfrac{1}{2} \times \bigg( 8.8 + 12.9 \bigg) \times 12 }}}} \\ \\ \\ \ {\dashrightarrow{\qquad{\sf{ Area = \dfrac{1}{2} \times 21.7 \times 12 }}}} \\ \\ \\ \ {\dashrightarrow{\qquad{\sf{ Area = \dfrac{1}{\cancel2} \times \cancel{260.4} }}}} \\ \\ \\ \ {\dashrightarrow{\qquad{\sf{ Area = 1 \times 130.2 }}}} \\ \\ \\ \ {\qquad \; \; \; {\dashrightarrow{\underline{\boxed{\pmb{\sf{ Area = 130.2 \; {m}^{2} }}}}}}} \; {\red{\bigstar}}

 \\ \\

 \therefore \; \; Area of the Trapezium is 130.2 .

 \\ \qquad{\rule{200pt}{3pt}}

Similar questions