Math, asked by manju374050, 11 months ago

Find the area of a trapezium shaped field having parallel sides 18cm and 10cm.
if the non-parallel sides are each of length 5 cm., find the area of the trapezium.​

Answers

Answered by Brâiñlynêha
2

\huge\mathbb{SOLUTION:-}

\bold{Given}\begin{cases}\sf{parallel\:sides\:of\: trapezium=18 and 10cm}\\ \sf{Non\: parallel\:sides\:are\:equal=5cm}\end{cases}

  • Find the height of trapezium

\sf Height {}^{2}=5{}^{2}-4{}^{2}\\ \\ \sf\leadsto h{}^{2}=25-16\\ \\ \sf\leadsto h=\sqrt{9}\\ \\ \sf\implies height=3cm

  • The height of trapezium is 3cm

Now Area of trapezium

\boxed{\sf{Area\:of\: trapezium=\frac{1}{2}\times (sum\:of\: parallel\:sides)\times height}}

\sf Area=\frac{1}{2}\times (18+10)\times 3\\ \\ \sf\implies Area=\frac{1}{\cancel2}\times \cancel{28}\times 3\\ \\ \sf\implies Area=14\times 3\\ \\ \sf\implies Area=42cm{}^{2}

\boxed{\sf{Area\:of\: trapezium=42cm{}^{2}}}

#BAL

#answerwithquality

Attachments:
Answered by 3CHANDNI339
3

 \underline \mathbb{SOLUTION}

 \underline \mathbb{GIVEN}

PARELLEL SIDES OF TRAPEZIUM = 18 cm and 10 cm

NON PARALLEL SIDES = 5 cm

 \underline \mathbb{TO\:FIND}

 =  >  {height}^{2}  =  {5}^{2}  -  {4}^{2}

 =  >  {h}^{2}  = 25 - 16

 =  > h =  \sqrt{9}

 =  > h = 3cm

HENCE, HEIGHT OF TRAPEZIUM = 3 cm

area \: of \: trapezium =  \frac{1}{2} \times (sum \: of \: parallel \: sides) \times height

 =  > area =  \frac{1}{2}  \times (18 + 10) \times 3

 =  > area =  \frac{1}{2}  \times 28 \times 3

 =  > area = 14 \times 3

 =  > area =  {42cm}^{2}

area \: of \: trapezium = 42 {cm}^{2}

_______________________________________

#BAL

#Answerwithquality

Attachments:
Similar questions