Math, asked by 2005100120, 3 months ago

Find the area of a trapezium-shaped window if the lengths of the parallel sides are 47 cm and 69 cm and the perpendicular distance between them is 23cm​

Answers

Answered by mananphymath
1

Answer:

Step-by-step explanation:

Area of Trapezium = (h/2)(a+b)

where h is the perpendicular distance between two parallel sides

and a and b are the lengths of the two parallel sides

Area = 1334 cm^{2}

Answered by Anonymous
4

 \mathfrak{ \pink{ \underline{ \blue{ \large{Correct  \: Question: }}}}}

Find the area of a trapezium-shaped window if the lengths of the parallel sides are 47 cm and 69 cm and the perpendicular distance between them is 23cm

 \mathfrak{ \pink{ \underline{ \blue{ \large{ Given:}}}}}

  • Parallel sides of trapezium = 47 cm and 69 cm
  • Height of trapezium = 23 cm

 \mathfrak{ \pink{ \underline{ \blue{ \large{To  \: Find: }}}}}

  • Area of trapezium

 \mathfrak{ \pink{ \underline{ \blue{ \large{ Solution: }}}}}

\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\ \mathfrak{ \underline{ \green{Formula \:  to  \: calculate  \: the \:  area  \: of  \: trapezium \: }}}

 \boxed{ \boxed{ \star \:  \:   \:  \: \:  \:{ \large { \red{  \mathfrak{area =  \frac{sum \: of \: parallel \: sides}{2}  \times height}}}}}}

According to question,

 \large{ \sf \longmapsto \:  \:   \:  \:  \:  \:  \:  \:\:  \:   {area =  \frac{47+69}{2}  \times 23}} \\

 \large{ \sf \longmapsto \:  \:   \:  \:  \:  \:  \:  \:\:  \:area = \frac{116}{2} \times 23}\\

 \large{ \sf \longmapsto \:  \:   \:  \:  \:  \:  \:  \:\:  \:area = 58 \times 23}

 \large{ \sf \longmapsto \:  \:   \:  \:  \:  \:  \:  \:\:  \: \boxed{ \boxed{ \purple{ \mathfrak{area = 1334\:  {cm}^{2} }}}}}

 \mathfrak{ \pink{ \underline{ \blue{ \large{ Hence:}}}}}

The area of trapezium is 1334 cm²

Similar questions