Math, asked by stellaokolue2018, 11 months ago

Find the area of a trapezium which has a height 20 cm and its parallel sides are 7cm and 8 cm long

Answers

Answered by Lmedhamshu
8

Answer:

150cmsq

Step-by-step explanation:

area of trapezium is

 \frac{1}{2}  \times height \times (sum \: of \: parallel \: sides)

 \frac{1}{2}  \times 20(7 + 8)

10*15=150

therefore area of trapezium is 150cmsquare

please mark me brainlist........please

Answered by Anonymous
39

Answer:

Diagram :

\setlength{\unitlength}{1.5cm}\begin{picture}\thicklines\qbezier(0,0)(0,0)(1,2.2)\qbezier(0,0)(0,0)(4,0)\qbezier(3,2.2)(4,0)(4,0)\qbezier(1.5,2.2)(0,2.2)(3,2.2)\put(0.8,2.4){$\bf$}\put(3,2.4){$\bf$}\put(-0.3,-0.3){$\bf$}\put(4,-0.3){$\bf$}\put(4.4,0){\vector(0,0){2.2}}\put( 4.4, 0){\vector(0,-1){0.1}}\put(4.6,1){$\bf 20\ cm$}\put(0, -0.5){\vector(1,0){4}}\put(0, -0.5){\vector( - 1, 0){0.1}}\put(1.7, - 0.9){$\bf 8\ cm$}\put(0.8, 2.8){\vector(1,0){2.5}}\put(0.8, 2.8){\vector( - 1, 0){0.1}}\put(1.7, 3){$\bf 7\ cm $}\end{picture}

\begin{gathered}\end{gathered}

Given :

  • » Parallel sides to trapezium = 7 cm and 8 cm
  • » Height of trapezium = 20 cm

\begin{gathered}\end{gathered}

To Find :

  • » Area of Trapezium

\begin{gathered}\end{gathered}

Concept :

\small\bigstar Here the concept of area of trapezium has been used. We are given that parallel sides of trapezium are 7cm and 8cmheight of trapezium is 20cm. We need to find the Area of trapezium.

\small\bigstar So, we'll find the area of trapezium by insert the values in the required  formula.

Using Formula :

\normalsize\bigstar{\underline{\boxed{\sf{\pink{Area  \: of \:  trapezium =  \dfrac{1}{2}\bigg(a + b \bigg)h}}}}}

\begin{gathered}\end{gathered}

Solution :

\small\bigstar Here, Let the :-

  • a = 7cm
  • b = 8cm
  • h = 20cm

\rule{200}2

\small\bigstar Now, finding the area of trapezium by substituting the values in the formula :-

\begin{gathered}\small{\dashrightarrow{\sf{Area_{(Trapezium)}=  \dfrac{1}{2}\bigg(a + b \bigg)h}}} \\ \end{gathered}

\begin{gathered}\small{\dashrightarrow{\sf{Area_{(Trapezium)}=  \dfrac{1}{2}\bigg( \: 7 + 8 \: \bigg)20}}} \\ \end{gathered}

\begin{gathered}\small{\dashrightarrow{\sf{Area_{(Trapezium)}=  \dfrac{1}{2}\bigg( \:  \: 15 \: \: \bigg)20}}} \\ \end{gathered}

\begin{gathered}\small{\dashrightarrow{\sf{Area_{(Trapezium)}=  \dfrac{1}{2} \times  15  \times 20}}} \\ \end{gathered}

\begin{gathered}\small{\dashrightarrow{\sf{Area_{(Trapezium)}=  \dfrac{1}{\cancel{2}} \times  15  \times  \cancel{20}}}}\\ \end{gathered}

\begin{gathered}\small{\dashrightarrow{\sf{Area_{(Trapezium)}=  1\times  15  \times  10}}}\\ \end{gathered}

\begin{gathered} \small{\dashrightarrow{\sf{Area_{(Trapezium)}=  15  \times  10}}}\\ \end{gathered}

\begin{gathered}\small{\dashrightarrow{\underline{\underline{\sf{Area_{(Trapezium)}= 150 \:  {cm}^{2}}}}}}\\ \end{gathered}

\begin{gathered} \small\bigstar{\underline{\boxed{\sf{\pink{Area_{(Trapezium)}=  150 \:  {cm}^{2}}}}}} \end{gathered}

\small\bigstar Hence, The area of trapezium is 150 cm².

\begin{gathered}\end{gathered}

Learn More :

\boxed{\begin {minipage}{9cm}\\ \dag\quad \Large\underline{\bf Formulas\:of\:Areas:-}\\ \\ \star\sf Square=(side)^2\\ \\ \star\sf Rectangle=Length\times Breadth \\\\ \star\sf Triangle=\dfrac{1}{2}\times Breadth\times Height \\\\ \star \sf Scalene\triangle=\sqrt {s (s-a)(s-b)(s-c)}\\ \\ \star \sf Rhombus =\dfrac {1}{2}\times d_1\times d_2 \\\\ \star\sf Rhombus =\:\dfrac {1}{2}p\sqrt {4a^2-p^2}\\ \\ \star\sf Parallelogram =Breadth\times Height\\\\ \star\sf Trapezium =\dfrac {1}{2}(a+b)\times Height \\ \\ \star\sf Equilateral\:Triangle=\dfrac {\sqrt{3}}{4}(side)^2\end {minipage}}

 \begin{gathered}\underline{\rule{200pt}{3pt}} \end{gathered}

Similar questions