Math, asked by Yashugehlot8447, 1 year ago

Find the area of a trapezium whose parallel sides 25 cm 13cm and other sides are 15 cm 15 cm

Answers

Answered by ansiyamundol2
5

Answer:

The area of the trapezium is 57\sqrt{21} cm^{2}.

Step-by-step explanation:

Given:

ABCD is a trapezium

AB = 25 cm\\DC = 13 cm\\

AD and BC=15 cm

Construction:

Draw CE || AD

To Find :

Area of trapezium ABCD

Solution :

ADCE is a parallelogram ( AD || CE and AE || CD)

Therefore AE = DC = 13 cm ( Opposite side of parallelogram are equal)

BE = AB - AE

BE = 25 - 13

BE = 12 cm

In triangle BCE :

S = a + b +\frac{c}{2}

S = 15 + 15 + \frac{12}{2}

S = 21

Area of  BCE = \sqrt{s(s-a)(s-b)(s-c)} \\Area of  BCE = \sqrt{21(21-15)(21-15)(21-12)} \\Area of  BCE = \sqrt{21*6*6*9}\\Area of  BCE = 18\sqrt{21}cm^{2}---Let this be (i)

h is the height of BCE

Area of BCE = \frac{1}{2}  ( Base * Height )\\\\=0.5(12)(h)\\=6h--- Let this be (ii)

From (i) and (ii) :

6h = 18\sqrt{21}\\ h = 3\sqrt{21} cm

The height of trapezium ABCD is equal to height of  BCE.

Area of trapezium :

= \frac{1}{2}  ( AB + CD )  h\\= 0.5 (25 + 13)  3\sqrt{21} cm^{2} \\= 57\sqrt{21} cm^{2}

Hence the area of the trapezium is 57\sqrt{21} cm^{2}.

Answered by bharathparasad577
1

Answer:

Concept:

The total amount of space a trapezium occupies in a two-dimensional plane is its area. Simply multiplying the total of the bases by the height and dividing the result by two yields the area of a trapezium.

Step-by-step explanation:

Given:

Parallel sides 25 cm 13cm and other sides are 15 cm 15 cm

Find:

The area of a trapezium

Solution:

Let ABCD be the given trapezium in which AB=25cm,CD=13cm,BC=15cm and AD=15cm.

         Draw $C E \| A D$ and $C F \perp B E$.

Now, ADCE is a parallelogram in which \mathrm{AD} \| \mathrm{CE}$ and $\mathrm{AE} \| \mathrm{CD}$.

\mathrm{AE}=\mathrm{DC}=13 \mathrm{~cm}$ and $\mathrm{BE}=\mathrm{AB}-\mathrm{AE}=25-13=12 \mathrm{~cm}$

          In $\triangle \mathrm{BCE}$, we have\\\\$\mathrm{s}=\frac{15+15+12}{2}=21 \mathrm{~cm}$\\\\$\therefore$ Area of $\triangle \mathrm{BCE}=\sqrt{\mathrm{s}(\mathrm{s}-\mathrm{a})(\mathrm{s}-\mathrm{b})(\mathrm{s}-\mathrm{c})}$

\Rightarrow$ Area of $\Delta \mathrm{BCE} =

\sqrt{21(21-15)(21-15)(21-12)}$$=\sqrt{21 \times 6 \times 6 \times 9}=18 \sqrt{21}$ sq cm ....(i)

Let \ $\mathrm{h}$\  be \ the \ height \ of $\triangle \mathrm{BCE}$, thenArea of $\triangle \mathrm{BCE}=\frac{1}{2}($ Base $\times$ Height $)$$=\frac{1}{2} \times 12 \times \mathrm{h}=6 \mathrm{~h}$.....(ii)

From (i) and (ii), we have,\\\\$6 \mathrm{~h}=18 \sqrt{21} \Rightarrow \mathrm{h}=3 \sqrt{21} \mathrm{~cm}$\\\\Clearly, the height of trapezium $\mathrm{ABCD}$ is same as that of $\triangle \mathrm{BCE}$.

$\therefore$ Area of trapezium $=\frac{1}{2}(\mathrm{AB}+\mathrm{CD}) \times \mathrm{h}$\\\\$\Rightarrow$ Area of trapezium $=\frac{1}{2}(25+13) \times 3 \sqrt{21} \mathrm{~cm}^{2}$\\\\$=57 \sqrt{21} \mathrm{~cm}^{2}$

#SPJ3

Attachments:
Similar questions