Math, asked by student7157, 3 months ago

find the area of a trapezium whose parallel sides are 6cm and 11cm and has a area 34cm .find the height of the trapezium​

Answers

Answered by BrainlyShadow01
50

Correct Question:-

The length of a parallel sides are 6 cm and 11 cm and has an area of 34 cm . Then find the height of the trapezium .

To Find:-

  • Find the height of the Trapezium.

Given:-

  • The length of a parallel sides are 6 cm and 11 cm and has an area of 34 cm.

Solution:-

\tt\implies \: Area \: \: of \: \: trapezium = \dfrac { 1 } { 2 } \times ( a + b ) \times h

\tt\implies \: 34 = \dfrac { 1 } { 2 } \times ( 6 + 11 ) \: h

\tt\implies \: 34 = \dfrac { 1 } { 2 } \times 17h

\tt\implies \: 17h = 34 \times 2

\tt\implies \: 17h = \cancel\dfrac { 34 \times 2 } { 17 }

\tt\implies \: h = 4 \: cm

Answered by anshu24497
5

 \huge \mathfrak{ \blue{ \underline{Correct \:  Question :}}}

The length of a parallel sides are 6 cm and 11 cm and has an area of 34 cm. Find the height of the trapezium.

 \huge \mathfrak{ \green{ \underline{Solution : }}}

{ \boxed{ \purple{{\rm\implies \: Area \: \: of \: \: trapezium = \dfrac { 1 } { 2 } \times ( a + b ) \times h }}}}

\sf\implies \: 34 = \dfrac { 1 } { 2 } \times ( 6 + 11 ) \: h \\ \sf\implies \: 34 = \dfrac { 1 } { 2 } \times 17h \\ \sf\implies \: 17h = 34 \times 2 \\ \sf\implies \: 17h = \cancel\dfrac { 34 \times 2 } { 17 } \\ {\red{\sf\implies h = 4 \: cm}}

Similar questions