Math, asked by Anonymous, 7 months ago

find the area of a triangle field whose sides are 30m, 40m and 50m. also, find the length of ?​


shonaansari7876: hi

Answers

Answered by Anonymous
78

━━━━━━━━━━━━━━━━━━━━━━━━━

Correct Question:-

find the area of a triangle field whose sides are 30m, 40m and 50m. also, find the length of altitude drawn on the longest side..‽

GivEn:

Sides of ∆ = 30 m, 40 m and 50 m

⠀⠀⠀⠀⠀⠀⠀

To find:

Length of altitude corresponding to the largest side of the ∆.

⠀⠀⠀⠀⠀⠀⠀

Solution:

\begin{gathered}\frak{Here} \begin{cases} & \sf{a = 30\;m} \\ & \sf{b = 40\;m} \\ & \sf{c = 50\;m} \end{cases}\\ \\\end{gathered}

Finding semi - perimeter of ∆,

⠀⠀⠀⠀⠀⠀⠀

\begin{gathered}:\implies\sf s = \dfrac{a + b + c}{2}\\ \\\end{gathered}

\begin{gathered}:\implies\sf s = \dfrac{30 + 40 + 50}{2}\\ \\\end{gathered}

\begin{gathered}:\implies\sf s = \dfrac{120}{2}\\ \\\end{gathered}

\begin{gathered}:\implies\bf s = 60\;m\\ \\\end{gathered}

Now, Finding area of triangular field using Heron's Formula,

⠀⠀⠀⠀⠀⠀⠀

\begin{gathered}\star\;{\boxed{\sf{\purple{Area = \sqrt{s(s - a)(s - b)(s - c)}}}}}\\ \\\end{gathered}

\begin{gathered}:\implies\sf \sqrt{60(60 - 30)(60 - 40)(60 - 50)}\\ \\\end{gathered}

\begin{gathered}:\implies\sf \sqrt{60 \times 30 \times 20 \times 10}\\ \\\end{gathered}

\begin{gathered}:\implies\sf \sqrt{360000}\\ \\\end{gathered}

\begin{gathered}:\implies{\boxed{\frak{\pink{600\;m^2}}}}\;\bigstar\\ \\\end{gathered}

━━━━━━━━━━━━━━━━━━━━━━━━━━

Now, Finding length of altitude corresponding to the largest side of the ∆.

⠀⠀⠀⠀⠀⠀⠀

\setlength{\unitlength}{1 cm}\begin{picture}(0,0)\linethickness{0.3mm}\qbezier(1, 0)(1,0)( 3,3)\qbezier(5,0)(5, 0)(3,3)\qbezier(5,0)(1,0)(1,0)\qbezier(1,0)(1,0)(4,1.5)\put(2.8,3.2){$\sf A$}\put(2.5, - 0.3){40 m}}\put(0.5,-0.2){\sf B}\put(4.5,1){50 m}\put(5.1, - 0.3){\sf C}\put(1.1,1.8){30 m}\put(4.2, 1.5){\sf D}\end{picture}

Here,

Largest side of triangular field is = 50 m

⠀⠀⠀⠀⠀⠀⠀

\begin{gathered}\star\;{\boxed{\sf{\purple{Area = \dfrac{1}{2} \times (base) \times (height)}}}}\\ \\\end{gathered}

\begin{gathered}:\implies\sf 600 = \dfrac{1}{ \cancel{2}} \times \cancel{50} \times (height)\\ \\\end{gathered}

\begin{gathered}:\implies\sf 600 = 25 \times (height)\\ \\\end{gathered}

\begin{gathered}:\implies\sf Height = 600 \times \dfrac{1}{25}\\ \\\end{gathered}

\begin{gathered}:\implies{\boxed{\frak{\pink{Height = 24\;m}}}}\;\bigstar\\ \\\end{gathered}

\therefore\;{\underline{\sf{Hence,\;length\;of\; altitude\;is\; \bf{24\;m}.}}}

━━━━━━━━━━━━━━━━━━━━━━━━━


BrainlyPopularman: Nice ♥️
mddilshad11ab: Perfect¶
Answered by itsRainbowstar
36

Answer:

GivEn:

Sides of ∆ = 30 m, 40 m and 50 m

⠀⠀⠀⠀⠀⠀⠀

To find:

Length of altitude corresponding to the largest side of the ∆.

⠀⠀⠀⠀⠀⠀⠀

Solution:

\frak{Here} \begin{cases} & \sf{a = 30\;m}  \\ & \sf{b = 40\;m} \\ & \sf{c = 50\;m} \end{cases}\\ \\

☞︎︎︎Finding semi - perimeter of ∆,

⠀⠀⠀⠀⠀⠀⠀

:\implies\sf s = \dfrac{a + b + c}{2}\\ \\

:\implies\sf s = \dfrac{30 + 40 + 50}{2}\\ \\

:\implies\sf s = \dfrac{120}{2}\\ \\

:\implies\bf s = 60\;m\\ \\

☞︎︎︎Now, Finding area of triangular field using Heron's Formula,

⠀⠀⠀⠀⠀⠀⠀

\star\;{\boxed{\sf{\purple{Area = \sqrt{s(s - a)(s - b)(s - c)}}}}}\\ \\

:\implies\sf \sqrt{60(60 - 30)(60 - 40)(60 - 50)}\\ \\

:\implies\sf \sqrt{60 \times 30 \times 20 \times 10}\\ \\

:\implies\sf \sqrt{360000}\\ \\

:\implies{\boxed{\frak{\pink{600\;m^2}}}}\;\bigstar\\ \\

⠀⠀⠀━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

☞︎︎︎ Now, Finding length of altitude corresponding to the largest side of the ∆.

⠀⠀⠀⠀⠀⠀⠀

\setlength{\unitlength}{1 cm}\begin{picture}(0,0)\linethickness{0.3mm}\qbezier(1, 0)(1,0)( 3,3)\qbezier(5,0)(5, 0)(3,3)\qbezier(5,0)(1,0)(1,0)\qbezier(1,0)(1,0)(4,1.5)\put(2.8,3.2){$\sf A$}\put(2.5, - 0.3){40 m}}\put(0.5,-0.2){\sf B}\put(4.5,1){50 m}\put(5.1, - 0.3){\sf C}\put(1.1,1.8){30 m}\put(4.2, 1.5){\sf D}\end{picture}

Here,

Largest side of triangular field is = 50 m

⠀⠀⠀⠀⠀⠀⠀

\star\;{\boxed{\sf{\purple{Area = \dfrac{1}{2} \times (base) \times (height)}}}}\\ \\

:\implies\sf 600 = \dfrac{1}{ \cancel{2}} \times \cancel{50} \times (height)\\ \\

:\implies\sf 600 = 25 \times (height)\\ \\

:\implies\sf Height = 600 \times \dfrac{1}{25}\\ \\

:\implies{\boxed{\frak{\pink{Height = 24\;m}}}}\;\bigstar\\ \\

\therefore\;{\underline{\sf{Hence,\;length\;of\; altitude\;is\; \bf{24\;m}.}}}

Similar questions