History, asked by namra1487, 4 months ago

find the area of a triangle if it's sides are 1) 17 cm, 25 cmand26 cm​

Answers

Answered by Mysterioushine
4

Given :

  • Sides of a triangle are 17 cm , 25 cm and 26 cm

To Find :

  • The area of the triangle

Solution :

The area of a triangle is given by ,

 \\  \star \: {\boxed{\purple{\sf{a =  \sqrt{s(s - a)(s - b)(s - c)} }}}} \\  \\

Where ,

  • s is semiperimeter
  • a , b and c are sides of the triangle

Semiperimeter of a triangle is given by ,

 \\   \star \: {\boxed{\purple{\sf{s =  \frac{a + b + c}{2} }}}} \\  \\

Where ,

  • a , b and c are sides of triangle

We have ,

  • a = 17 cm
  • b = 25 cm
  • c = 26 cm

Substituting the values ,

 \\   : \implies \sf \: s =  \frac{17 + 25 + 26}{2}  \\  \\

 \\ :   \implies \sf \: s =  \frac{68}{2}  \\  \\

 \\   : \implies{\underline{\boxed{\red{\sf{s = 34 \: cm}}}}} \\  \\

Now we have ,

  • a = 17 cm
  • b = 25 cm
  • c = 26 cm
  • s = 34 cm

Calculating the area of given triangle ,

 \\   : \implies \sf \: a =  \sqrt{34(34 - 17)(34 - 25)(34 - 26)}  \\  \\

 \\   : \implies \sf \: a =  \sqrt{34(17)(9)(8)}  \\  \\

 \\   : \implies \sf \: a =  \sqrt{41616}  \\  \\

 \\   : \implies{\underline{\boxed{\pink{\mathfrak{a = 204 \:  {cm}^{2} }}}}}  \: \bigstar \\  \\

 \\  \therefore \:  {\underline{\sf{Hence \:  ,  \: The  \: area \:  of \:  the  \: given  \: triangle \:   \: is \:  \bold{ 204 cm^2}}}}

Answered by bswagatam04
0

Formula to be used

Area of a triangle = \sqrt{s(s-a)(s-b)(s-c)}

Here:

s is the semiperimeter

a,b,c are the sides of the triangle.

Semiperimeter is basically the half of sum of all the sides.

Assumptions

Let us assume the sides :

a = 17 cm

b = 25 cm

c = 26 cm

Process

Now, we can say that semi perimeter will be:

s=\frac{a+b+c}{2}

Substituting a,b and c, we get:-

s=\frac{17+25+26}{2}

\boxed{s=34cm}

Substituting s,a,b and c in the area formula:-

Area=\sqrt{34(34-17)(34-25)(34-26)}

=\sqrt{34(17)(9)(8)}

=204

Thus, we can say that :-

\huge\boxed{Area=204 cm2}

Similar questions