Math, asked by sowmyap352, 3 months ago

Find the area of a triangle.its two sides are 18cm and 10cm, perimeter is 42 cm

Answers

Answered by suraj5070
286

 \sf \bf \huge {\boxed {\mathbb {QUESTION}}}

 \tt Find \:the\: area\: of \:a \:triangle.\:Its\: two \:sides \:are\: 18\:cm\\\tt and\: 10\:cm, \:perimeter\: is\: 42\: cm.

 \sf \bf \huge {\boxed {\mathbb {ANSWER}}}

 \sf \bf {\boxed {\mathbb {GIVEN}}}

  •  \bf First \:side\:of\:the \:triangle(a) = 18\:cm
  •  \bf Second\:side\:of\:the \:triangle(b) = 10\:cm
  •  \bf Perimeter \:the \:triangle(P) = 42\:cm

 \sf \bf {\boxed {\mathbb {TO\:FIND}}}

  •  \bf Area\:of\:the \:triangle(A)

 \sf \bf {\boxed {\mathbb {SOLUTION}}}

{\pink {\underline {\bf {\pmb {Third \:side\:of\:the \:triangle(c)}}}}}

 {\blue {\boxed {\boxed {\boxed {\green {\pmb {P_{(Triangle)}=a+b+c}}}}}}}

  •  \sf P= perimeter\:of\:the \:triangle
  •  \sf a=first \:side \:of\:the \:triangle
  •  \sf b=second\:side \:of\:the \:triangle
  •  \sf c=third \:side \:of\:the \:triangle

 {\underbrace {\overbrace {\orange {\pmb {Substitute \:the \:values}}}}}

 \bf \implies 42=18+10+c

 \bf \implies 42=28+c

 \bf \implies c=42-28

 \implies {\blue {\boxed {\boxed {\purple {\sf c=14\:cm}}}}}

————————————————————————————

{\pink {\underline {\bf {\pmb {Semiperimeter \:of\:the \:triangle(S)}}}}}

 {\blue {\boxed {\boxed {\boxed {\green {\pmb {S=\dfrac{P}{2}}}}}}}}

  •  \sf S=semiperimeter \:of\:the \:triangle
  •  \sf P=perimeter \:of\:the \:triangle

 {\underbrace {\overbrace {\orange {\pmb {Substitute \:the \:values}}}}}

 \bf \implies S=\dfrac{42}{2}

 \bf \implies S=\dfrac{\cancel{42}}{\cancel{2}}

 \implies {\blue {\boxed {\boxed {\purple {\sf S=21\:cm}}}}}

——————————————————————————————

{\pink {\underline {\bf {\pmb {Area \:of\:the \:triangle(A)}}}}}

 {\blue {\boxed {\boxed {\boxed {\green {\pmb {A_{(Triangle)}=\sqrt{S\Big(S-a\Big) \Big(S-b\Big) \Big(S-c\Big)}}}}}}}}

  •  \sf A=area\:of \:the \:triangle
  •  \sf S=semiperimeter \:of\:the \:triangle
  •  \sf a=first \:side \:of\:the \:triangle
  •  \sf b=second\:side \:of\:the \:triangle
  •  \sf c=third \:side \:of\:the \:triangle

 {\underbrace {\overbrace {\orange {\pmb {Substitute \:the \:values}}}}}

 \bf \implies A=\sqrt{21\Big(21-18\Big) \Big(21-10\Big) \Big(21-14\Big)}

 \bf \implies A=\sqrt{21\Big(3\Big) \Big(11\Big) \Big(7\Big)}

 \bf \implies A=\sqrt{21\times 3\times 11\times 7}

 \bf \implies A=\sqrt{4851}

 \bf \implies A=\sqrt{441\times 11}

 {\blue {\boxed {\boxed {\purple {\mathfrak {A=21\sqrt{11}\:{cm}^{2}}}}}}}

 {\underbrace {\red {\overline {\red {\underline {\red {\pmb {\sf {{\therefore} The\:area \:of \:the \:triangle \:is\:21\sqrt{11}\:{cm}^{2}}}}}}}}}}

 \sf \bf \huge {\boxed {\mathbb {HOPE \:IT \:HELPS \:YOU}}}

____________________________________________

 \sf \bf \huge {\boxed {\mathbb {EXTRA\:INFORMATION}}}

 \sf Area \:of \:the \:triangle = \dfrac{1}{2}bh

 \sf Perimeter\:of \:the \:triangle =a+b+c

Answered by Anonymous
97

Given :

  • First side of the triangle = a = 18 cm
  • Second side of the triangle = b = 10 cm
  • Third side of the triangle = c = 42 cm

\\

A N S W E R :

  • The Area of a triangle is {\sf{21 \sqrt{11} cm^2}}

\\

To find :

  • Find Area of the triangle ?

\\

Solution :

  • a + b = 18 + 10 = 28 cm
  • Perimeter of the rectangle = a + b + c = 42 cm
  • c = 42 cm - 28 cm = 14 cm

\\

Also,

{\sf{S \:=\; \dfrac{a + b + c}{2} = \cancel{\dfrac{42}{2} }}}{\sf{=\;21}}

\\

Now, By Using Heron's Formula,

  • \boxed{\bf{Area\: of\: the\; ∆ \;=\;A\:=\; \sqrt{s(s - a)(s - b)(s - c)} }}

\\

{\sf{A\:=\; \sqrt{21(21 - 18)(21 - 10)(21 - 14)} }}

\\

:\implies{\sf{A\:=\; \sqrt{21\:×\:3\:×\:11\;×\;7} }}

\\

~~~~~:\implies{\sf{A\:=\; \sqrt{21\:×\:21\:×\:21} }}

\\

~~~~~~~~~~:\implies{\underline{\boxed{\frak{\pink{A\;=\;21\sqrt{11} cm^2}}}}}

\\

Hence,

  • {\underline{\sf{The \: Area\: of\:a\: rectangle\;is\; \bf{21\sqrt{11\:cm^2}}}}}

\\

~~~~\qquad\quad\therefore{\underline{\textsf{\textbf{Hence, Proved!}}}}

~~~~~~~~~~~~~~~ ____________________

Similar questions