Math, asked by WARHAWKx15, 11 months ago


Find the area of a triangle of side 50 cm ,50 cm and 20 cm using Heron's Formula.​

Answers

Answered by Rythm14
9

Answer :-

{\underline{\boxed{\sf Area = 200\sqrt{6}}}

Step-by-step explanation :-

Heron's Formula :-

\sqrt{s(s-a)(s-b)(s-c)}

-----------------------------------

S = a + b + c /2

= 50 + 50 + 20/2

= 120/2

= 60

-----------------------------------

Substituting values in formula :-

= \sqrt{s(s-a)(s-b)(s-c)}

= \sqrt{60(60-50)(60-50)(60-20)

= \sqrt{60*10*10*40}

= \sqrt{2*2*3*5*2*5*2*5*2*2*2*5}

= 200\sqrt{6}

------------------------------------

Therefore the area of triangle is 200√6

Answered by Anonymous
20

SOLUTION:-

Let a, b & c are the sides of triangle and S is the semi- perimeter, then its area is given by:

a =  \sqrt{s(s - a)(s - b)(s - c)}  \: where \: \\ s =  \frac{a + b + c}{2} \:  \:  \: </u></strong><strong><u>[</u></strong><strong><u>H</u></strong><strong><u>eron</u></strong><strong><u>'</u></strong><strong><u>s</u></strong><strong><u> \: formula</u></strong><strong><u>]</u></strong><strong><u>

Given,

a= 50cm

b= 50cm

c= 20cm

s =  \frac{a + b + c}{2}  \\  \\  =  &gt;  \frac{50 + 50 + 20}{2}  =  \frac{120}{2}  \\  \\  =  &gt; 60cm

Now, Area of ∆

a =  \sqrt{s(s - a)(s - b)(s - c)}  \\  \\  =  &gt;  \sqrt{60(60 - 50)(60 - 50)(60 - 20)}  \\  \\  =  &gt;  \sqrt{60(10)(10)(40)}  \\  \\  =  &gt;  \sqrt{2 \times 2 \times 3 \times 5 \times 10 \times 10 \times 2 \times 2 \times 2 \times 5}  \\  \\  =  &gt; 2 \times 2 \times 5 \times 10 \sqrt{6}  \\  \\  =  &gt; 200 \sqrt{6}  {cm}^{2}

Hope it helps ☺️

Similar questions