Math, asked by boramanas87, 5 months ago

Find the area of a triangle two sides of which are 18 cm and 10 cm and the perimeter
is 42 cm

Answers

Answered by nitya3186
1

Answer:

Step-by-step explanation:

69.95

hope this helps

Answered by aviralkachhal007
7

\huge{\bold{\underline{\underline{Given:-}}}}

  • Side 1 of triangle = 18cm
  • Side 2 of triangle = 10cm
  • Perimeter of triangle = 42cm

\huge{\bold{\underline{\underline{To\:Find:-}}}}

  • Area of triangle

\huge{\bold{\underline{\underline{Solution:-}}}}

Let's consider a ΔABC

Side 1 = AB = 18cm

Side 2 = BC = 10cm

Perimeter = 42cm

Side 3 = AC = ?

Let Side 3 be 'x'

A.T.Q.

Perimeter of triangle = Sum of all sides

42cm = 18cm + 10cm + X cm

42cm = 28cm + X cm

X cm = 42cm - 28cm

X cm = 14 cm

∴ Side Side 3 = AC = 14cm

◈ Area :-

A = 18cm

B = 10cm

C = 14cm

Semi perimeter = \frac{A+B+C}{2}

= \frac{18+10+14}{2}

= \frac{42}{2}

= 21 cm

Area =

  = \sqrt{s(s - a)(s - b)(s - c)}

 =  \sqrt{21(21 - 18)(21 - 10)(21 - 14)}

 =  \sqrt{21(3)(11)(7)}

 =  \sqrt{3 \times 7 \times 3 \times 11 \times 7}

 = 7 \times 3 \sqrt{11}

 =  21\sqrt{11}

So, Area of triangle = 21√11 cm²

Similar questions