Math, asked by manjusahugujnam, 1 day ago

find the area of a triangle two sides of which are 18 cm and 10cm and the perimeter is 42cm​

Answers

Answered by Anonymous
22

Given :

  • Perimeter of triangle = 42 cm
  • 1st side of triangle = 18 cm
  • 2nd side of triangle = 10 cm

 \\ {\underline{\rule{200pt}{3pt}}}

To Find :

  • Area of Traingle = ?

 \\ {\underline{\rule{200pt}{3pt}}}

Solution :

~ Formula Used :

  • Perimeter :

 {\color{cyan}{\bigstar}} \: \: {\underline{\boxed{\red{\sf{ Perimeter{\small_{(Triangle)}} = a + b + c }}}}}

  • Area :

 {\color{cyan}{\bigstar}} \: \: {\underline{\boxed{\red{\sf{ Area{\small_{(Triangle)}} = \sqrt{s (s - a)(s - b)(s - c) } }}}}}

Where :

  • s = Semi - Perimeter
  • a = Side 1
  • b = Side 2
  • c = Side 3

 \\ \qquad{\rule{150pt}{1pt}}

~ Calculating the 3rd side of Triangle :

 \; \longmapsto \sf \; \; \; { Perimeter = a + b + c }

 \; \longmapsto \sf \; \; \; \; \; \; { 42 = 18 + 10 + c }

 \; \longmapsto \sf \; \; \; \; \; \; \; \; \; { 42 = 28 + c }

 \; \longmapsto \sf \; \; \; \; \; \; \; \; \; { 42 - 28 = c }

 \; \; \; \; {\orange{\longmapsto \: {\underline{\underbrace{\sf{ 3rd \: Side = {\color{maroon}{\sf{ 14 \: cm }}}}}}}}}

 \\ \qquad{\rule{150pt}{1pt}}

~ Calculating the Area of Triangle :

  • Semi - Perimeter :

 \; \longrightarrow \sf \; \; \; { S = \dfrac{a + b + c}{2} }

 \; \longrightarrow \sf \; \; \; { S = \dfrac{18 + 10 + 14}{2} }

 \; \longrightarrow \sf \; \; \; \; \; \; \; \; \; { S = \dfrac{42}{2} }

 \; \longrightarrow \sf \; \; \; \; \; \; \; \; \; { S = \cancel\dfrac{42}{2} }

 \; \; \; \; {\blue{\longrightarrow \: {\underline{\underbrace{\sf{ Semi - Perimeter = {\color{red}{\sf{ 21 \: cm }}}}}}}}}

 \\

  • Area :

 \; \dashrightarrow \sf \; \; \; \; { Area{\small_{(Triangle)}} = \sqrt{s (s - a)(s - b)(s - c) } }

 \; \dashrightarrow \sf \; \; \; \; { Area{\small_{(Triangle)}} = \sqrt{21 (21 - 18)(21 - 10)(21 - 14) } }

 \; \dashrightarrow \sf \; \; \; \; { Area{\small_{(Triangle)}} = \sqrt{21 \times 3 \times 11 \times 7 }}

 \; \dashrightarrow \sf \; \; \; \; { Area{\small_{(Triangle)}} = \sqrt{ 7 \times 3 \times \sqrt{11} }}

 \; \; \; \; {\pink{\dashrightarrow \: {\underline{\underbrace{\sf{ Area = {\color{orange}{\sf{ 21 \sqrt{11} \: cm² }}}}}}}}}

 \\ \qquad{\rule{150pt}{1pt}}

❝ Area of the triangle is 2111 cm² . ❞

 \\ {\red{\underline{\rule{75pt}{9pt}}}}{\color{cyan}{\underline{\rule{75pt}{9pt}}}}{\color{pink}{\underline{\rule{75pt}{9pt}}}}

Answered by bibhutikr673
6

Answer:

Formula is in short!

hope it helps you.

Attachments:
Similar questions