Math, asked by fhSunny111, 1 year ago

find the area of a triangle two sides of which are 18cm and 10 cm and the perimeter is 42

Attachments:

jsdcorreo: ≈69.65cm², http://triancal.esy.es/?a=18&b=10&p=42
Anonymous: what's this??
jsdcorreo: areajsdcorreo
≈69.65cm²
jsdcorreo: hipotheneuse =30-18=13cm, area≈69.65cm² put it in triancal and voila
jsdcorreo: sorry no hipothenuse
Anonymous: ok

Answers

Answered by AryanTennyson
21
Let the sides a, b and c
a=18cm
b=10c
Perimeter=42cm

a+b+c=42
18+10+c=42
28+c=42
c=42-28=14cm

S=42/2=21
Area of triangle=√s(s-a)(s-b)(s-c)
=21√11cm^2
Answered by Anonymous
24
Hello dear friend ...
Ur answer is .

sol. \\ perimeter \: of \: the \: triangle \:  = 42cm \\ let \:  a = 18cm \:  \: and  \: \: b = 10cm \\  \\   c = (42 - 18 - 10)cm \:  = 14 \\  \\ s =  \frac{a + b + c}{2}  =  \frac{42}{2}  = 21cm \\  \\ using \:  \: herons \: formula \\ area \:  \: of \: triangle   \:  \\ =     \sqrt{s(s - a)(s - b)(s - c)}    \\  \\  \sqrt{21(21 - 18)(21 - 14)(21 - 10)}  \\  \\  =  \sqrt{21 \times 3 \times 7 \times 11}  =  \sqrt{21 \times 21 \times 21 }  \\ \\   =  21 \sqrt{11}  {cm}^{2}
Hope it's helps you.
<<☺>>
Similar questions