Math, asked by JanJoseph, 4 months ago

Find the area of a triangle two sides of which are 18cm and 10cm and the perimeter is 42cm​

Answers

Answered by shreekrishna35pdv8u8
2

Step-by-step explanation:

a = 18cm

b = 10cm

perimeter = 42cm

c = 42-18-10 = 14cm

s =  \frac{p}{2}  =  \frac{42}{2}  = 21 \\

area of triangle

  = \sqrt  s({s - a)(s - b)(s - c)}   \\  =  \sqrt{21(21 - 18)(21 - 10)(21 - 14)}  \\  =  \sqrt{21 \times 3 \times 11 \times 7}   \\  =  \sqrt{3 \times 7 \times 3 \times 11 \times 7}  \\  = 3 \times 7 \sqrt{11}  \\  = 21 \sqrt{11}  \\  = 61.649(approx)

Answered by itzHitman
19

Area \: of \: triangle \sqrt{s(s - a)(9 - b)(s - 0}

Here ,S is the Semi - perimeter,

and a,b,c are the Sides of the triangle.

Given,

a = 18 cm ,b = 10 Cm

and perimeter = 42 Cm

 \:  \:  \: Semi \: perimeter = s \frac{perimeter}{2}

 \:  \:  \: s =  \frac{42}{2}

 \:  \:  \: s = 21cm

We need to find C,

Now,

Perimeter = 42 Cm.

a+b+c = 42Cm.

18cm + 10cm + c =42

28 cm + c =42 Cm

C = 42-28cm

C = 14 cm.

Area \: of \: the \: triangle =  \sqrt{s(s -  a)(s - b)(s - c)}

putting \: a = 18cm \: ,\: b = 10cm, \: c = 14cm \: and \: s = 21cm

Area \: of \: the \: triangle =  \sqrt{21(21 - 18)(21 - 10)(21 - 14)}

 \:  \:  \:  =  \sqrt{21(3)(11)(7)}

 \:  \:  \:  =  \sqrt{21(7 \times 3)(11)}

 \:  \:  \:  =  \sqrt{21(21)(11)}

 \:  \:  \:  =  \sqrt{21 \times 21 \sqrt{11} }

 \:  \:  \:  =  \sqrt{ {21}^{2}  \times  \sqrt{11} }

 \:  \:  \:  \:  = (21) \times  \sqrt{11}

 \:  \:  \:  = 21 \sqrt{11}

Thus Area = 21 \sqrt{11 {cm}^{2} }

Similar questions