Math, asked by SHIVAMDHASMANA, 1 month ago

Find the area of a triangle two sides of which are 18cm and 10cm and the perimeter is 42cm


Don't copy from \huge\blue{G}\red{o}\orange{o}\green{g}\blue{l}\orange{e}


nah... khud likha be... ​

Answers

Answered by FiercePrince
6

Given : The two sides of Triangle are 18 cm and 10 cm and Perimeter of Triangle is 42 cm .

Need To Find : Area of Triangle ?

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━━━━━━━━━⠀

Let's Consider the third side of Triangle be x cm .

\dag{\underline {\frak{ As \:We \:know \:that \: \::\:}}}\\

⠀⠀⠀★ The Sum of all sides of Triangle is the Perimeter of Triangle & Perimeter of a given Triangle is 42 cm .

\qquad \twoheadrightarrow \:\pmb{\sf  \: Perimeter \:_{\:( Triangle)\:}\:=\: a\:+\:b\:+\:c\:}\\\\\\ \qquad    \twoheadrightarrow \:\sf 18 \:+\:10\:+\:x \:=\: 42 \\\\\\  \qquad    \twoheadrightarrow \:\sf 28\:+\:x \:=\: 42 \\\\\\ \qquad    \twoheadrightarrow \:\sf \:x \:=\: 42\:-\:28 \\\\\\  \qquad    \twoheadrightarrow \:\pmb{\underline {\boxed {\purple {\frak{ \:x \:=\: 14\:cm \:}}}}}\:\:\bigstar \\\\\\

∴ Hence , Three Sides of Triangle are 18 cm , 10 cm & 14 cm .

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━━━━━━━━━⠀

CalCuLaTing ArEa oF TriAngLE :

\qquad \star \pmb{\underline {\boxed {\frak{ Area_{\:(Triangle)\:}\:=\: \sqrt{\: s\: \bigg( s - a \bigg) \:\bigg( s - b \bigg)\:\bigg( s - c \bigg)\:}\:}}}}\\\\

\frak{ Here}\:\begin{cases}\quad \:\sf a \: =\: \frak{\pmb{18\:cm \:}} \\ \quad \:\sf b \: =\: \frak{\pmb{10\:cm \:}} \\\quad \:\sf c \: =\: \frak{\pmb{14\:cm \:}} \\ \quad \:\sf s \: =\: \frak{\pmb{21\:cm \:}}\:i.e,\:Semi\:-\:Perimeter\:(s)\:=\:\dfrac{42}{2}\:=\:21\:cm\end{cases}\\

\qquad \dag\underline {\frak{ Substituting \:known \:Values \:in \:Given \:Formula \:\::\:}}\\\\

:\implies \sf Area_{\:(Triangle)\:}\:=\: \sqrt{\: s\: \bigg( s - a \bigg) \:\bigg( s - b \bigg)\:\bigg( s - c \bigg)\:}\: \\\\

:\implies \sf Area_{\:(Triangle)\:}\:=\: \sqrt{\: 21\: \bigg( 21 - 18 \bigg) \:\bigg( 21 - 10 \bigg)\:\bigg( 21 - 14 \bigg)\:}\: \\\\

:\implies \sf Area_{\:(Triangle)\:}\:=\: \sqrt{\: 21\: \bigg( 3 \bigg) \:\bigg( 11 \bigg)\:\bigg( 7 \bigg)\:}\: \\\\

:\implies \sf Area_{\:(Triangle)\:}\:=\: \sqrt{\: 21\: \times 3 \times \:\times 11 \times\: 7 \:}\: \\\\

:\implies \sf Area_{\:(Triangle)\:}\:=\: \sqrt{\: 21\: \times 21 \times  11 \:}\: \\\\

:\implies \pmb{\underline {\boxed {\frak{\purple { Area_{\:(Triangle)\:}\:=\: 21\sqrt{\:   11 \:}\:cm^2\:}}}}}\:\:\bigstar \\\\

Similar questions