Math, asked by chauhanrajveersinhra, 5 months ago

find the area of a triangle two sides of which are 28 cm and 10 cm and the perimeter is 42 cm

Answers

Answered by Anonymous
2

Correct Question:-

A triangle two sides of which are 18 cm and 10 cm and the perimeter is 42 cm.

To FinD:-

The area.

SolutioN:-

  • We know that measures of all 3 sides of a triangle sum up to its perimeter.
  • Perimeter = 42 cm.
  • 1st side = 18 cm.
  • 2nd Side = 10 cm.

Let the third side be x.

According to the question,

\large\implies{\sf{18+10+x=42}}

\large\implies{\sf{18+x=42}}

\large\implies{\sf{x=42-18}}

\large\therefore\boxed{\bf{x=14}}

Therefore, the third side is 14 cm.

VerificatioN:-

\large\implies{\sf{28+10+14=42}}

\large\implies{\sf{42=42}}

\large\therefore\boxed{\bf{LHS=RHS}}

____________________________

Now the Area:-

By using Heron's Formula,

\large{\green{\underline{\boxed{\bf{Area=\sqrt{s(s-a)(s-b)(s-c)}}}}}}

where,

  • s is Semiperimeter = Perimeter/2 = 42/2 = 21 cm
  • a = 18 cm
  • b = 10 cm
  • c = 14 cm

Putting the values,

\large\implies{\sf{Area=\sqrt{21(21-18)(21-10)(21-14)}}}

\large\implies{\sf{Area=\sqrt{21\times3\times11\times7}}}

\large\implies{\sf{Area=\sqrt{21\times21\times11}}}

\large\therefore\boxed{\bf{Area=21\sqrt{11}\:cm^2.}}

The area is 2111 cm².

Answered by Anonymous
14

 \implies \huge \sf\underline \red{Answer}

\sf\therefore \underline \purple{area = 21 \sqrt{11} {cm}^{2}}

To find:

  • Area of triangle

solution:

we know that area of triangle formula,

 \bf{ \boxed{ \underline{ \underline{ \red{ \sf{area \: of \: triangle =  \sqrt{s(s - a)(s - b)(s - c) \: }}}}}}}

 \sf \underline{so}

  • s is semi perimeter

  • a,b,c is sides of triangle

\sf \underline{Given}

  • a = 18 cm

  • b = 10 cm

  • perimeter = 42cm

\sf \underline{we \: know \: that \: semi \: perimeter \: formula}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf{semi \: perimeter =  \dfrac{perimeter}{2}}

 \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf{s =  \dfrac{42}{2}}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf{semi  = 21cm}

we have to find c

\sf \underline{now}

 \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf \blue{perimeter = 42}

 \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf \blue{a + b + c = 42}

 \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf \blue{18cm + 10cm + c = 42}

 \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf \blue{28cm + c= 42}

 \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf \blue{c = 42 - 28cm}

 \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf \blue{c = 14cm}

\sf \underline{take \: the \: formula \: again : }

\bf{ \boxed{ \underline{ \underline{ \red{ \sf{area \: of \: triangle =  \sqrt{s(s - a)(s - b)(s - c) \: }}}}}}}

  • a = 18 cm

  • b = 10 cm

  • c = 14 cm

  • s = 21 cm

\bf{ \boxed{ \underline{ \underline{ \red{ \sf{area \: of \: triangle =  \sqrt{s(s - a)(s - b)(s - c) \: }}}}}}}

 \:  \:  \:  \:  \:  \:  \sf{Area \: of \: traingle =  \sqrt{21(21 - 18)(21 - 10)(21 - 14)}}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf{ =  \sqrt{21(3)(11)(7)}}

\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf{ =  \sqrt{21(7 \times 3)(11)}}

\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf{ =  \sqrt{21(21)(11)}}

\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf{ =  \sqrt{21 \times 21 \times  \sqrt{11}} }

\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf{ =  \sqrt{ {21}^{2} \times  \sqrt{11}}   }

\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf{ = 21 \times  \sqrt{11} }

\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf{ = 21 \sqrt{11} }

 \sf  \purple\therefore \underline{area = 21 \sqrt{11} {cm}^{2}}

Similar questions